BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 29381289)

  • 1. UC-VEGF-SMC Three Dimensional (3D) Nano Scaffolds Exhibits Good Repair Function in Bladder Damage.
    Ling Q; Wang T; Yu X; Wang SG; Ye ZQ; Liu JH; Yang SW; Zhu XB; Yu J
    J Biomed Nanotechnol; 2017 Mar; 13(3):313-23. PubMed ID: 29381289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tissue engineering of bladder using vascular endothelial growth factor gene-modified endothelial progenitor cells.
    Chen BS; Xie H; Zhang SL; Geng HQ; Zhou JM; Pan J; Chen F
    Int J Artif Organs; 2011 Dec; 34(12):1137-46. PubMed ID: 22198599
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Lipid-Nanosphere-Small MyoD Activating RNA-Bladder Acellular Matrix Graft Scaffold [NP(saMyoD)/BAMG] Facilitates Rat Injured Bladder Muscle Repair and Regeneration [NP(saMyoD)/BAMG].
    Jin C; Cao N; Ni J; Zhao W; Gu B; Zhu W
    Front Pharmacol; 2020; 11():795. PubMed ID: 32581787
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Endometrial stem cell differentiation into smooth muscle cell: a novel approach for bladder tissue engineering in women.
    Shoae-Hassani A; Sharif S; Seifalian AM; Mortazavi-Tabatabaei SA; Rezaie S; Verdi J
    BJU Int; 2013 Oct; 112(6):854-63. PubMed ID: 24028767
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Experimental studies on the repair and restitution of cartilage by cartilage acellular extracellular matrix and adipose tissue-derived stem cells].
    Wang L; Ren MM; Jian YL; Meng BX; Ma FL; Wang WJ; Guo SY
    Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2019 Feb; 54(2):133-138. PubMed ID: 30776866
    [No Abstract]   [Full Text] [Related]  

  • 6. Bladder muscle regeneration enhanced by sustainable delivery of heparin from bilayer scaffolds carrying stem cells in a rat bladder partial cystectomy model.
    Wang C; Wang H; Guo Q; Ang X; Li B; Han F; Fu Y; Chen W
    Biomed Mater; 2021 Apr; 16(3):. PubMed ID: 33740781
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differentiation of adipose-derived stem cells toward nucleus pulposus-like cells induced by hypoxia and a three-dimensional chitosan-alginate gel scaffold in vitro.
    Zhang Z; Li F; Tian H; Guan K; Zhao G; Shan J; Ren D
    Chin Med J (Engl); 2014; 127(2):314-21. PubMed ID: 24438622
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In Vivo Evaluation of Adipose-Derived Stromal Cells Delivered with a Nanofiber Scaffold for Tendon-to-Bone Repair.
    Lipner J; Shen H; Cavinatto L; Liu W; Havlioglu N; Xia Y; Galatz LM; Thomopoulos S
    Tissue Eng Part A; 2015 Nov; 21(21-22):2766-74. PubMed ID: 26414599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tissue engineering of urethra using human vascular endothelial growth factor gene-modified bladder urothelial cells.
    Guan Y; Ou L; Hu G; Wang H; Xu Y; Chen J; Zhang J; Yu Y; Kong D
    Artif Organs; 2008 Feb; 32(2):91-9. PubMed ID: 18005271
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increased urothelial cell detection in the primary bladder smooth muscle cell cultures with dual MACS/qRT-PCR approach.
    Genheimer CW; Guthrie KI; Shokes JE; Bruce AT; Quinlan SF; Sangha N; Ilagan RM; Basu J; Burnette T; Ludlow JW
    Appl Immunohistochem Mol Morphol; 2011 Mar; 19(2):184-9. PubMed ID: 20930617
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bladder reconstruction with adipose-derived stem cell-seeded bladder acellular matrix grafts improve morphology composition.
    Zhu WD; Xu YM; Feng C; Fu Q; Song LJ; Cui L
    World J Urol; 2010 Aug; 28(4):493-8. PubMed ID: 20091038
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bladder tissue engineering: tissue regeneration and neovascularization of HA-VEGF-incorporated bladder acellular constructs in mouse and porcine animal models.
    Loai Y; Yeger H; Coz C; Antoon R; Islam SS; Moore K; Farhat WA
    J Biomed Mater Res A; 2010 Sep; 94(4):1205-15. PubMed ID: 20694987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Age-dependent vascular endothelial growth factor expression and angiogenic capability of bladder smooth muscle cells: implications for cell-seeded technology in bladder tissue engineering.
    Azzarello J; Kropp BP; Fung KM; Lin HK
    J Tissue Eng Regen Med; 2009 Dec; 3(8):579-89. PubMed ID: 19685443
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D printed complex tissue construct using stem cell-laden decellularized extracellular matrix bioinks for cardiac repair.
    Jang J; Park HJ; Kim SW; Kim H; Park JY; Na SJ; Kim HJ; Park MN; Choi SH; Park SH; Kim SW; Kwon SM; Kim PJ; Cho DW
    Biomaterials; 2017 Jan; 112():264-274. PubMed ID: 27770630
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Periodontal regeneration with stem cells-seeded collagen-hydroxyapatite scaffold.
    Liu Z; Yin X; Ye Q; He W; Ge M; Zhou X; Hu J; Zou S
    J Biomater Appl; 2016 Jul; 31(1):121-31. PubMed ID: 27009932
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Porous gelatin microspheres implanted with adipose mesenchymal stromal cells promote angiogenesis via protein kinase B/endothelial nitric oxide synthase signaling pathway in bladder reconstruction.
    Zhao J; Yang T; Zhou L; Liu J; Mao L; Jia R; Zhao F
    Cytotherapy; 2023 Dec; 25(12):1317-1330. PubMed ID: 37804283
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stem Cells Seeded on Multilayered Scaffolds Implanted into an Injured Bladder Rat Model Improves Bladder Function.
    Shrestha KR; Jeon SH; Jung AR; Kim IG; Kim GE; Park YH; Kim SH; Lee JY
    Tissue Eng Regen Med; 2019 Apr; 16(2):201-212. PubMed ID: 30989046
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of rabbit urine-derived stem cells for potential application in lower urinary tract tissue regeneration.
    Yang H; Chen B; Deng J; Zhuang G; Wu S; Liu G; Deng C; Yang G; Qiu X; Wei P; Wang X; Zhang Y
    Cell Tissue Res; 2018 Nov; 374(2):303-315. PubMed ID: 30066105
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The healing effect of stem cells loaded in nanofibrous scaffolds on full thickness skin defects.
    Biazar E; Keshel SH
    J Biomed Nanotechnol; 2013 Sep; 9(9):1471-82. PubMed ID: 23980496
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adipose-derived stem cells loaded photocurable and bioprintable bioinks composed of GelMA, HAMA and PEGDA crosslinker to differentiate into smooth muscle phenotype.
    Atturu P; Mudigonda S; Wang CZ; Wu SC; Chen JW; Forgia MFF; Dahms HU; Wang CK
    Int J Biol Macromol; 2024 Apr; 265(Pt 2):130710. PubMed ID: 38492701
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.