These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 29381365)

  • 1. Biocatalytic Membrane Based on Polydopamine Coating: A Platform for Studying Immobilization Mechanisms.
    Zhang H; Luo J; Li S; Wei Y; Wan Y
    Langmuir; 2018 Feb; 34(8):2585-2594. PubMed ID: 29381365
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Covalent laccase immobilization on the surface of poly(vinylidene fluoride) polymer membrane for enhanced biocatalytic removal of dyes pollutants from aqueous environment.
    Zhu Y; Qiu F; Rong J; Zhang T; Mao K; Yang D
    Colloids Surf B Biointerfaces; 2020 Jul; 191():111025. PubMed ID: 32305624
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An enzymatic membrane reactor for oligodextran production: Effects of enzyme immobilization strategies on dextranase activity.
    Su Z; Luo J; Sigurdardóttir SB; Manferrari T; Jankowska K; Pinelo M
    Carbohydr Polym; 2021 Nov; 271():118430. PubMed ID: 34364570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of Lipase Immobilization Mode on Ethyl Acetate Hydrolysis in a Continuous Solid-Gas Biocatalytic Membrane Reactor.
    Vitola G; Mazzei R; Poerio T; Barbieri G; Fontananova E; Büning D; Ulbricht M; Giorno L
    Bioconjug Chem; 2019 Aug; 30(8):2238-2246. PubMed ID: 31310713
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immobilization of glucose oxidase on polydopamine-functionalized graphene oxide.
    Zhou L; Jiang Y; Ma L; He Y; Gao J
    Appl Biochem Biotechnol; 2015 Jan; 175(2):1007-17. PubMed ID: 25355003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combined of ultrasound irradiation with high hydrostatic pressure (US/HHP) as a new method to improve immobilization of dextranase onto alginate gel.
    Bashari M; Abbas S; Xu X; Jin Z
    Ultrason Sonochem; 2014 Jul; 21(4):1325-34. PubMed ID: 24582659
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polydopamine-mediated synthesis of core-shell gold@calcium phosphate nanoparticles for enzyme immobilization.
    Li D; Fang Z; Duan H; Liang L
    Biomater Sci; 2019 Jun; 7(7):2841-2849. PubMed ID: 31069351
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biocatalytic nylon nanofibrous membranes.
    Arecchi A; Scampicchio M; Brenna OV; Mannino S
    Anal Bioanal Chem; 2010 Dec; 398(7-8):3097-103. PubMed ID: 20953773
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functionalization of a membrane sublayer using reverse filtration of enzymes and dopamine coating.
    Luo J; Meyer AS; Mateiu RV; Kalyani D; Pinelo M
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):22894-904. PubMed ID: 25420028
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbohydrate base co-polymers as an efficient immobilization matrix to enhance lipase activity for potential biocatalytic applications.
    Badgujar KC; Bhanage BM
    Carbohydr Polym; 2015 Dec; 134():709-17. PubMed ID: 26428176
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facile synthesis of oxidic PEG-modified magnetic polydopamine nanospheres for Candida rugosa lipase immobilization.
    Hou C; Zhu H; Li Y; Li Y; Wang X; Zhu W; Zhou R
    Appl Microbiol Biotechnol; 2015 Feb; 99(3):1249-59. PubMed ID: 25117546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Silica nanowires with tunable hydrophobicity for lipase immobilization and biocatalytic membrane assembly.
    Jin Q; Li X; Deng C; Zhang Q; Yi D; Wang X; Tang Y; Wang Y
    J Colloid Interface Sci; 2018 Dec; 531():555-563. PubMed ID: 30056330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved catalytic performance of lipase accommodated in the mesoporous silicas with polymer-modified microenvironment.
    Liu J; Bai S; Jin Q; Zhong H; Li C; Yang Q
    Langmuir; 2012 Jun; 28(25):9788-96. PubMed ID: 22642540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immobilization of laccase from Aspergillus oryzae on graphene nanosheets.
    Skoronski E; Souza DH; Ely C; Broilo F; Fernandes M; Fúrigo A; Ghislandi MG
    Int J Biol Macromol; 2017 Jun; 99():121-127. PubMed ID: 28237573
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Halloysite Clay Nanotubes for Enzyme Immobilization.
    Tully J; Yendluri R; Lvov Y
    Biomacromolecules; 2016 Feb; 17(2):615-21. PubMed ID: 26699154
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biocatalytic characterization of free and immobilized laccase from Trametes versicolor in its activation zone.
    Saoudi O; Ghaouar N
    Int J Biol Macromol; 2019 May; 128():681-691. PubMed ID: 30711566
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Harnessing the biocatalytic attributes and applied perspectives of nanoengineered laccases-A review.
    Bilal M; Ashraf SS; Cui J; Lou WY; Franco M; Mulla SI; Iqbal HMN
    Int J Biol Macromol; 2021 Jan; 166():352-373. PubMed ID: 33129906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pinewood nanobiochar: A unique carrier for the immobilization of crude laccase by covalent bonding.
    Naghdi M; Taheran M; Brar SK; Kermanshahi-Pour A; Verma M; Surampalli RY
    Int J Biol Macromol; 2018 Aug; 115():563-571. PubMed ID: 29689286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Covalent immobilization of Candida rugosa lipase on aldehyde functionalized hydrophobic support and the application for synthesis of oleic acid ester.
    Temoçin Z
    J Biomater Sci Polym Ed; 2013; 24(14):1618-35. PubMed ID: 23574345
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving Pullulanase Catalysis via Reversible Immobilization on Modified Fe
    Wang J; Liu Z; Zhou Z
    Appl Biochem Biotechnol; 2017 Aug; 182(4):1467-1477. PubMed ID: 28185055
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.