These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 29381441)

  • 1. Coexistence of Stochastic Oscillations and Self-Organized Criticality in a Neuronal Network: Sandpile Model Application.
    Saeedi A; Jannesari M; Gharibzadeh S; Bakouie F
    Neural Comput; 2018 Apr; 30(4):1132-1149. PubMed ID: 29381441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stochastic Oscillation in Self-Organized Critical States of Small Systems: Sensitive Resting State in Neural Systems.
    Wang SJ; Ouyang G; Guang J; Zhang M; Wong KY; Zhou C
    Phys Rev Lett; 2016 Jan; 116(1):018101. PubMed ID: 26799044
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stochastic oscillations and dragon king avalanches in self-organized quasi-critical systems.
    Kinouchi O; Brochini L; Costa AA; Campos JGF; Copelli M
    Sci Rep; 2019 Mar; 9(1):3874. PubMed ID: 30846773
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coexistence of scale-invariant and rhythmic behavior in self-organized criticality.
    Moosavi SA; Montakhab A; Valizadeh A
    Phys Rev E; 2018 Aug; 98(2-1):022304. PubMed ID: 30253485
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characteristics of deterministic and stochastic sandpile models in a rotational sandpile model.
    Santra SB; Chanu SR; Deb D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr; 75(4 Pt 1):041122. PubMed ID: 17500880
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Universal predictability of large avalanches in the Manna sandpile model.
    Shapoval A; Savostianova D; Shnirman M
    Chaos; 2022 Aug; 32(8):083130. PubMed ID: 36049908
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Power law distributions of burst duration and interburst interval in the solar wind: turbulence or dissipative self-organized criticality?
    Freeman MP; Watkins NW; Riley DJ
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Dec; 62(6 Pt B):8794-7. PubMed ID: 11138184
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization by Self-Organized Criticality.
    Hoffmann H; Payton DW
    Sci Rep; 2018 Feb; 8(1):2358. PubMed ID: 29402956
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dissipative stochastic sandpile model on small-world networks: Properties of nondissipative and dissipative avalanches.
    Bhaumik H; Santra SB
    Phys Rev E; 2016 Dec; 94(6-1):062138. PubMed ID: 28085447
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Harmonic dynamics of the abelian sandpile.
    Lang M; Shkolnikov M
    Proc Natl Acad Sci U S A; 2019 Feb; 116(8):2821-2830. PubMed ID: 30728300
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sustained activity in hierarchical modular neural networks: self-organized criticality and oscillations.
    Wang SJ; Hilgetag CC; Zhou C
    Front Comput Neurosci; 2011; 5():30. PubMed ID: 21852971
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Can power-law scaling and neuronal avalanches arise from stochastic dynamics?
    Touboul J; Destexhe A
    PLoS One; 2010 Feb; 5(2):e8982. PubMed ID: 20161798
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Criticality and turbulence in a resistive magnetohydrodynamic current sheet.
    Klimas AJ; Uritsky VM
    Phys Rev E; 2017 Feb; 95(2-1):023209. PubMed ID: 28297949
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Emergent Self-Organized Criticality in Gene Expression Dynamics: Temporal Development of Global Phase Transition Revealed in a Cancer Cell Line.
    Tsuchiya M; Giuliani A; Hashimoto M; Erenpreisa J; Yoshikawa K
    PLoS One; 2015; 10(6):e0128565. PubMed ID: 26067993
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-organized criticality and pattern emergence through the lens of tropical geometry.
    Kalinin N; Guzmán-Sáenz A; Prieto Y; Shkolnikov M; Kalinina V; Lupercio E
    Proc Natl Acad Sci U S A; 2018 Aug; 115(35):E8135-E8142. PubMed ID: 30111541
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proof of breaking of self-organized criticality in a nonconservative abelian sandpile model.
    Tsuchiya T; Katori M
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Feb; 61(2):1183-8. PubMed ID: 11046392
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonequilibrium phase transition and self-organized criticality in a sandpile model with stochastic dynamics.
    Lübeck S; Tadic B; Usadel KD
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1996 Mar; 53(3):2182-2189. PubMed ID: 9964497
    [No Abstract]   [Full Text] [Related]  

  • 18. Flooding transition in the topography of toppling surfaces of stochastic and rotational sandpile models.
    Ahmed JA; Santra SB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 1):031111. PubMed ID: 22587042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlling self-organized criticality in sandpile models.
    Cajueiro DO; Andrade RF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 2):015102. PubMed ID: 20365422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emergence of oscillations in fixed-energy sandpile models on complex networks.
    Fazli D; Azimi-Tafreshi N
    Phys Rev E; 2022 Jan; 105(1-1):014303. PubMed ID: 35193280
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.