These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 29381442)

  • 1. Dethroning the Fano Factor: A Flexible, Model-Based Approach to Partitioning Neural Variability.
    Charles AS; Park M; Weller JP; Horwitz GD; Pillow JW
    Neural Comput; 2018 Apr; 30(4):1012-1045. PubMed ID: 29381442
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling stimulus-dependent variability improves decoding of population neural responses.
    Ghanbari A; Lee CM; Read HL; Stevenson IH
    J Neural Eng; 2019 Oct; 16(6):066018. PubMed ID: 31404915
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bayesian active learning of neural firing rate maps with transformed gaussian process priors.
    Park M; Weller JP; Horwitz GD; Pillow JW
    Neural Comput; 2014 Aug; 26(8):1519-41. PubMed ID: 24877730
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flexible models for spike count data with both over- and under- dispersion.
    Stevenson IH
    J Comput Neurosci; 2016 Aug; 41(1):29-43. PubMed ID: 27008191
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Including long-range dependence in integrate-and-fire models of the high interspike-interval variability of cortical neurons.
    Jackson BS
    Neural Comput; 2004 Oct; 16(10):2125-95. PubMed ID: 15333210
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fano factor estimation.
    Rajdl K; Lansky P
    Math Biosci Eng; 2014 Feb; 11(1):105-23. PubMed ID: 24245675
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fitting a stochastic spiking model to neuronal current injection data.
    Shinomoto S
    Neural Netw; 2010 Aug; 23(6):764-9. PubMed ID: 20478693
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Testing the odds of inherent vs. observed overdispersion in neural spike counts.
    Taouali W; Benvenuti G; Wallisch P; Chavane F; Perrinet LU
    J Neurophysiol; 2016 Jan; 115(1):434-44. PubMed ID: 26445864
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Drawing inferences from Fano factor calculations.
    Eden UT; Kramer MA
    J Neurosci Methods; 2010 Jun; 190(1):149-52. PubMed ID: 20416340
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bayesian estimation of stimulus responses in Poisson spike trains.
    Lehky SR
    Neural Comput; 2004 Jul; 16(7):1325-43. PubMed ID: 15165392
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-time particle filtering and smoothing algorithms for detecting abrupt changes in neural ensemble spike activity.
    Hu S; Zhang Q; Wang J; Chen Z
    J Neurophysiol; 2018 Apr; 119(4):1394-1410. PubMed ID: 29357468
    [TBL] [Abstract][Full Text] [Related]  

  • 12. State dependence of stimulus-induced variability tuning in macaque MT.
    Lombardo JA; Macellaio MV; Liu B; Palmer SE; Osborne LC
    PLoS Comput Biol; 2018 Oct; 14(10):e1006527. PubMed ID: 30312315
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient, adaptive estimation of two-dimensional firing rate surfaces via Gaussian process methods.
    Rad KR; Paninski L
    Network; 2010; 21(3-4):142-68. PubMed ID: 21138363
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using Tweedie distributions for fitting spike count data.
    Moshitch D; Nelken I
    J Neurosci Methods; 2014 Mar; 225():13-28. PubMed ID: 24440773
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dimensionality reduction in neural models: an information-theoretic generalization of spike-triggered average and covariance analysis.
    Pillow JW; Simoncelli EP
    J Vis; 2006 Apr; 6(4):414-28. PubMed ID: 16889478
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimating nonstationary inputs from a single spike train based on a neuron model with adaptation.
    Kim H; Shinomoto S
    Math Biosci Eng; 2014 Feb; 11(1):49-62. PubMed ID: 24245682
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequential Monte Carlo point-process estimation of kinematics from neural spiking activity for brain-machine interfaces.
    Wang Y; Paiva AR; Príncipe JC; Sanchez JC
    Neural Comput; 2009 Oct; 21(10):2894-930. PubMed ID: 19548797
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonlinear Modeling of Neural Interaction for Spike Prediction Using the Staged Point-Process Model.
    Qian C; Sun X; Zhang S; Xing D; Li H; Zheng X; Pan G; Wang Y
    Neural Comput; 2018 Dec; 30(12):3189-3226. PubMed ID: 30314427
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gaussian process approach to spiking neurons for inhomogeneous Poisson inputs.
    Amemori KI; Ishii S
    Neural Comput; 2001 Dec; 13(12):2763-97. PubMed ID: 11705410
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of spike statistics in neuronal systems with continuous attractors or multiple, discrete attractor States.
    Miller P
    Neural Comput; 2006 Jun; 18(6):1268-317. PubMed ID: 16764505
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.