These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 29381479)
1. Mechanical responses of a-axis GaN nanowires under axial loads. Wang RJ; Wang CY; Feng YT; Tang C Nanotechnology; 2018 Mar; 29(9):095707. PubMed ID: 29381479 [TBL] [Abstract][Full Text] [Related]
2. Fatigue and its effect on the piezopotential properties of gallium nitride nanowires. Zhang J; Du Y Nanotechnology; 2021 Dec; 33(9):. PubMed ID: 34814121 [TBL] [Abstract][Full Text] [Related]
3. Role of surface oxidation on the size dependent mechanical properties of nickel nanowires: a ReaxFF molecular dynamics study. Aral G; Islam MM; van Duin ACT Phys Chem Chem Phys; 2017 Dec; 20(1):284-298. PubMed ID: 29205239 [TBL] [Abstract][Full Text] [Related]
4. Insufficiency of the Young's modulus for illustrating the mechanical behavior of GaN nanowires. Kouhpanji MRZ; Behzadirad M; Feezell D; Busani T Nanotechnology; 2018 May; 29(20):205706. PubMed ID: 29473824 [TBL] [Abstract][Full Text] [Related]
5. Crystallography-Derived Young's Modulus and Tensile Strength of AlN Nanowires as Revealed by in Situ Transmission Electron Microscopy. Firestein KL; Kvashnin DG; Fernando JFS; Zhang C; Siriwardena DP; Sorokin PB; Golberg DV Nano Lett; 2019 Mar; 19(3):2084-2091. PubMed ID: 30786716 [TBL] [Abstract][Full Text] [Related]
6. Elastic properties of GaN nanowires: revealing the influence of planar defects on young's modulus at nanoscale. Dai S; Zhao J; He MR; Wang X; Wan J; Shan Z; Zhu J Nano Lett; 2015 Jan; 15(1):8-15. PubMed ID: 25427143 [TBL] [Abstract][Full Text] [Related]
7. Size dependence of Young's modulus in ZnO nanowires. Chen CQ; Shi Y; Zhang YS; Zhu J; Yan YJ Phys Rev Lett; 2006 Feb; 96(7):075505. PubMed ID: 16606107 [TBL] [Abstract][Full Text] [Related]
8. Analogous mechanical behaviors in [Formula: see text] and [Formula: see text] directions of Cu nanowires under tension and compression at a high strain rate. Lin YC; Pen DJ Nanotechnology; 2007 Oct; 18(39):395705. PubMed ID: 21730430 [TBL] [Abstract][Full Text] [Related]
9. Crystal orientation-dependent tensile mechanical behavior and deformation mechanisms of zinc-blende ZnSe nanowires. Islam ASMJ; Hasan MS; Islam MS; Bhuiyan AG; Stampfl C; Park J Sci Rep; 2023 Mar; 13(1):3532. PubMed ID: 36864111 [TBL] [Abstract][Full Text] [Related]
10. Crystallographic orientation control and optical properties of GaN nanowires. Wu S; Wang L; Yi X; Liu Z; Yan J; Yuan G; Wei T; Wang J; Li J RSC Adv; 2018 Jan; 8(4):2181-2187. PubMed ID: 35542617 [TBL] [Abstract][Full Text] [Related]
11. Growth Conditions Control the Elastic and Electrical Properties of ZnO Nanowires. Wang X; Chen K; Zhang Y; Wan J; Warren OL; Oh J; Li J; Ma E; Shan Z Nano Lett; 2015 Dec; 15(12):7886-92. PubMed ID: 26510098 [TBL] [Abstract][Full Text] [Related]
12. Crystallography and elasticity of individual GaN nanotubes. Liu B; Bando Y; Wang M; Tang C; Mitome M; Golberg D Nanotechnology; 2009 May; 20(18):185705. PubMed ID: 19420628 [TBL] [Abstract][Full Text] [Related]
13. Mechanical properties of Si nanowires as revealed by in situ transmission electron microscopy and molecular dynamics simulations. Tang DM; Ren CL; Wang MS; Wei X; Kawamoto N; Liu C; Bando Y; Mitome M; Fukata N; Golberg D Nano Lett; 2012 Apr; 12(4):1898-904. PubMed ID: 22435880 [TBL] [Abstract][Full Text] [Related]
14. Effect of a High Density of Stacking Faults on the Young's Modulus of GaAs Nanowires. Chen Y; Burgess T; An X; Mai YW; Tan HH; Zou J; Ringer SP; Jagadish C; Liao X Nano Lett; 2016 Mar; 16(3):1911-6. PubMed ID: 26885570 [TBL] [Abstract][Full Text] [Related]
15. A computational and experimental investigation of the mechanical properties of single ZnTe nanowires. Davami K; Mortazavi B; Ghassemi HM; Yassar RS; Lee JS; Rémond Y; Meyyappan M Nanoscale; 2012 Feb; 4(3):897-903. PubMed ID: 22173853 [TBL] [Abstract][Full Text] [Related]
16. Study of deformation and shape recovery of NiTi nanowires under torsion. Wu CD; Sung PH; Fang TH J Mol Model; 2013 Apr; 19(4):1883-90. PubMed ID: 23329144 [TBL] [Abstract][Full Text] [Related]
17. Anomalous surface states modify the size-dependent mechanical properties and fracture of silica nanowires. Tang C; Dávila LP Nanotechnology; 2014 Oct; 25(43):435702. PubMed ID: 25298024 [TBL] [Abstract][Full Text] [Related]
18. Facile synthesis of silicon nitride nanowires with flexible mechanical properties and with diameters controlled by flow rate. Dong S; Hu P; Zhang X; Cheng Y; Fang C; Xu J; Chen G Sci Rep; 2017 Mar; 7():45538. PubMed ID: 28349956 [TBL] [Abstract][Full Text] [Related]
19. In situ mechanical resonance behaviour of pristine and defective zinc blende GaAs nanowires. Pickering E; Bo A; Zhan H; Liao X; Tan HH; Gu Y Nanoscale; 2018 Feb; 10(5):2588-2595. PubMed ID: 29350729 [TBL] [Abstract][Full Text] [Related]
20. Effects of cross-sectional area and aspect ratio coupled with orientation on mechanical properties and deformation behavior of Cu nanowires. Cao H; Chen W; Rui Z; Yan C Nanotechnology; 2022 Jun; 33(36):. PubMed ID: 34844233 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]