These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 29382067)

  • 1. Relationship between the Size of the Samples and the Interpretation of the Mercury Intrusion Results of an Artificial Sandstone.
    Dong H; Zhang H; Zuo Y; Gao P; Ye G
    Materials (Basel); 2018 Jan; 11(2):. PubMed ID: 29382067
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ink-bottle effect in mercury intrusion porosimetry of cement-based materials.
    Moro F; Böhni H
    J Colloid Interface Sci; 2002 Feb; 246(1):135-49. PubMed ID: 16290394
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ink-bottle Effect and Pore Size Distribution of Cementitious Materials Identified by Pressurization⁻Depressurization Cycling Mercury Intrusion Porosimetry.
    Zhang Y; Yang B; Yang Z; Ye G
    Materials (Basel); 2019 May; 12(9):. PubMed ID: 31060298
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pore Structure Damages in Cement-Based Materials by Mercury Intrusion: A Non-Destructive Assessment by X-Ray Computed Tomography.
    Wang X; Peng Y; Wang J; Zeng Q
    Materials (Basel); 2019 Jul; 12(14):. PubMed ID: 31295836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study of Fractal and Multifractal Features of Pore Structure in Tight Sandstone Reservoirs of the Permian Lucaogou Formation, Jimsar Sag, Junggar Basin, Northwest China.
    Han C; Li G; Dan S; Yang Y; He X; Qi M; Liu G
    ACS Omega; 2022 Sep; 7(35):31352-31366. PubMed ID: 36092574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pore structure characterization and its influence on aqueous phase trapping damage in tight gas sandstone reservoirs.
    Guo Q; Lu X; Liu T; Yang M; Wang K; Zhao Y; Tao L
    PLoS One; 2024; 19(4):e0298672. PubMed ID: 38669299
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of cement-bonded materials by multi-cycle mercury intrusion and nitrogen sorption.
    Kaufmann J; Loser R; Leemann A
    J Colloid Interface Sci; 2009 Aug; 336(2):730-7. PubMed ID: 19505695
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mercury Intrusion Porosimetry and Image Analysis of Cement-Based Materials.
    Abell AB; Willis KL; Lange DA
    J Colloid Interface Sci; 1999 Mar; 211(1):39-44. PubMed ID: 9929433
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of a void network model to correlate porosity, mercury porosimetry, thin section, absolute permeability, and NMR relaxation time data for sandstone rocks.
    Matthews GP; Canonville CF; Moss AK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Mar; 73(3 Pt 1):031307. PubMed ID: 16605517
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the characterization of porosity in PTFE-carbon composite implant materials by mercury porosimetry.
    Dehl RE
    J Biomed Mater Res; 1982 Sep; 16(5):715-9. PubMed ID: 7130222
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mercury Penetration and Snap-off in Lenticular Pores.
    Tsakiroglou CD; Kolonis GB; Roumeliotis TC; Payatakes AC
    J Colloid Interface Sci; 1997 Sep; 193(2):259-72. PubMed ID: 9344527
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mercury cyclic porosimetry: Measuring pore-size distributions corrected for both pore-space accessivity and contact-angle hysteresis.
    Gu Z; Goulet R; Levitz P; Ihiawakrim D; Ersen O; Bazant MZ
    J Colloid Interface Sci; 2021 Oct; 599():255-261. PubMed ID: 33945972
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mercury porosimetry of microcrystalline cellulose tablets: effect of scanning speed and moisture.
    Westermarck S
    Eur J Pharm Biopharm; 2000 Sep; 50(2):319-25. PubMed ID: 10962244
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-scale analysis of a tight gas sandstone.
    Song Y; Davy CA; Nguyen Kim T; Troadec D; Hauss G; Jeannin L; Adler PM
    Phys Rev E; 2016 Oct; 94(4-1):043316. PubMed ID: 27841556
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Full-scale pore size distribution features of uranium-bearing sandstone in the northwest of Xinjiang, China.
    Zeng S; Li H; Zhang N; Sun B; Li J; Liu Y
    R Soc Open Sci; 2021 May; 8(5):202036. PubMed ID: 34084542
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intrusion of nonwetting liquid in paper.
    Hyväluoma J; Turpeinen T; Raiskinmäki P; Jäsberg A; Koponen A; Kataja M; Timonen J; Ramaswamy S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Mar; 75(3 Pt 2):036301. PubMed ID: 17500785
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pore network as a model of porous media: comparison between nonhierarchical and hierarchical organizations of pores.
    Vocka R; Dubois MA
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Oct; 62(4 Pt B):5216-24. PubMed ID: 11089083
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Porosity Measurement of Low Permeable Materials Using Gas Expansion Induced Water Intrusion Porosimetry (GEIWIP).
    Jarrahi M; Ruth DW; Bassuoni MT; Holländer HM
    Sci Rep; 2019 Nov; 9(1):17554. PubMed ID: 31772252
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism Affecting the Pore Differentiation Characteristics of Fine-Grained Tight Sandstones: A Case Study of Permian Shanxi Formation in Ordos Basin.
    Li G; Guo Y; Wang H; Yang X; Hou Y; Ye S; Zhang K
    ACS Omega; 2023 Mar; 8(10):9499-9510. PubMed ID: 36936295
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Porosity and Pore Size Distribution of Native and Delignified Beech Wood Determined by Mercury Intrusion Porosimetry.
    Vitas S; Segmehl JS; Burgert I; Cabane E
    Materials (Basel); 2019 Jan; 12(3):. PubMed ID: 30700052
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.