These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 29382092)

  • 1. Non-Destructive Spectroscopic Techniques and Multivariate Analysis for Assessment of Fat Quality in Pork and Pork Products: A Review.
    Kucha CT; Liu L; Ngadi MO
    Sensors (Basel); 2018 Jan; 18(2):. PubMed ID: 29382092
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent advances in rapid and nondestructive determination of fat content and fatty acids composition of muscle foods.
    Tao F; Ngadi M
    Crit Rev Food Sci Nutr; 2018 Jun; 58(9):1565-1593. PubMed ID: 28118034
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Iodine values of adipose tissue varied among breeds of pigs and were correlated with pork quality.
    Testroet ED; Yoder CL; Testroet A; Reynolds C; O'Neil MR; Lei SM; Beitz DC; Baas TJ
    Adipocyte; 2017 Oct; 6(4):284-292. PubMed ID: 28792779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-Destructive Imaging and Spectroscopic Techniques for Assessment of Carcass and Meat Quality in Sheep and Goats: A Review.
    Silva S; Guedes C; Rodrigues S; Teixeira A
    Foods; 2020 Aug; 9(8):. PubMed ID: 32784641
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of two methods of determining colour change in the assessment of the quality of pork.
    Karamucki T; Rybarczyk A; Jakubowska M; Sulerzycka A
    Acta Sci Pol Technol Aliment; 2017; 16(3):321-329. PubMed ID: 29055980
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of dietary fat source and concentration and daily fatty acid intake on the composition of carcass fat and iodine value sampled in three regions of the pork carcass.
    Kellner TA; Prusa KJ; Patience JF
    J Anim Sci; 2014 Dec; 92(12):5485-95. PubMed ID: 25367509
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Application of near infrared reflectance spectroscopy to predict meat chemical compositions: a review].
    Tao LL; Yang XJ; Deng JM; Zhang X
    Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Nov; 33(11):3002-9. PubMed ID: 24555369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid and non-invasive quantification of intramuscular fat content of intact pork cuts.
    Huang H; Liu L; Ngadi MO; Gariépy C
    Talanta; 2014 Feb; 119():385-95. PubMed ID: 24401429
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrogenated dietary fat improves pork quality of pigs from two lean genotypes.
    Averette Gatlin L; See MT; Hansen JA; Odle J
    J Anim Sci; 2003 Aug; 81(8):1989-97. PubMed ID: 12926781
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of total fatty acid parameters and individual fatty acids in pork backfat using Raman spectroscopy and chemometrics: Understanding the cage of covariance between highly correlated fat parameters.
    Berhe DT; Eskildsen CE; Lametsch R; Hviid MS; van den Berg F; Engelsen SB
    Meat Sci; 2016 Jan; 111():18-26. PubMed ID: 26331962
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Review: Pork quality attributes from farm to fork. Part I. Carcass and fresh meat.
    Lebret B; Čandek-Potokar M
    Animal; 2022 Feb; 16 Suppl 1():100402. PubMed ID: 34836808
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting quality and sensory attributes of pork using near-infrared hyperspectral imaging.
    Barbin DF; ElMasry G; Sun DW; Allen P
    Anal Chim Acta; 2012 Mar; 719():30-42. PubMed ID: 22340528
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid determination of pork sensory quality using Raman spectroscopy.
    Wang Q; Lonergan SM; Yu C
    Meat Sci; 2012 Jul; 91(3):232-9. PubMed ID: 22341828
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interactive effect of ractopamine and dietary fat source on pork quality characteristics of fresh pork chops during simulated retail display.
    Apple JK; Maxwell CV; Kutz BR; Rakes LK; Sawyer JT; Johnson ZB; Armstrong TA; Carr SN; Matzat PD
    J Anim Sci; 2008 Oct; 86(10):2711-22. PubMed ID: 18502886
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of pork fat attributes using NIR Images of frozen and thawed pork.
    Huang H; Liu L; Ngadi MO
    Meat Sci; 2016 Sep; 119():51-61. PubMed ID: 27132204
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-destructive determination of chemical composition in intact and minced pork using near-infrared hyperspectral imaging.
    Barbin DF; ElMasry G; Sun DW; Allen P
    Food Chem; 2013 Jun; 138(2-3):1162-71. PubMed ID: 23411227
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of variability in pork carcass composition and quality between barrows and gilts.
    Overholt MF; Arkfeld EK; Mohrhauser DA; King DA; Wheeler TL; Dilger AC; Shackelford SD; Boler DD
    J Anim Sci; 2016 Oct; 94(10):4415-4426. PubMed ID: 27898864
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-term stability of a Raman instrument determining iodine value in pork adipose tissue.
    Olsen EF; Baustad C; Egelandsdal B; Rukke EO; Isaksson T
    Meat Sci; 2010 May; 85(1):1-6. PubMed ID: 20374856
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Online monitoring of red meat color using hyperspectral imaging.
    Kamruzzaman M; Makino Y; Oshita S
    Meat Sci; 2016 Jun; 116():110-7. PubMed ID: 26874594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Potential Use of 3-D Scanning to Evaluate the Chemical Composition of Pork Meat.
    Adamczak L; Chmiel M; Florowski T; Pietrzak D; Witkowski M; Barczak T
    J Food Sci; 2015 Jul; 80(7):E1506-11. PubMed ID: 25998468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.