These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 29382161)

  • 1. Effect of Fluoride on the Morphology and Electrochemical Property of Co₃O₄ Nanostructures for Hydrazine Detection.
    Zhou T; Gao W; Wang Q; Umar A
    Materials (Basel); 2018 Jan; 11(2):. PubMed ID: 29382161
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aerosol-assisted nanostructuring of nickel/cobalt oxide thin films for viable electrochemical hydrazine sensing.
    Rehman A; Ehsan MA; Afzal A; Ali A; Iqbal N
    Analyst; 2021 May; 146(10):3317-3327. PubMed ID: 33999084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High Aspect Ratio Perforated Co₃O₄ Nanowires Derived from Cobalt-Carbonate-Hydroxide Nanowires with Enhanced Sensing Performance.
    Zhou T; Gao W; Wang Q; Umar A
    J Nanosci Nanotechnol; 2018 May; 18(5):3499-3504. PubMed ID: 29442857
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stepwise Splitting Growth and Pseudocapacitive Properties of Hierarchical Three-Dimensional Co₃O₄ Nanobooks.
    Chen H; Lu S; Gong F; Liu H; Li F
    Nanomaterials (Basel); 2017 Apr; 7(4):. PubMed ID: 28394297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CoO microspheres and metallic Co evolved from hexagonal α-Co(OH)
    Ma K; Liu F; Yuan YF; Liu XQ; Wang J; Xie J; Cheng JP
    Phys Chem Chem Phys; 2017 Dec; 20(1):595-604. PubMed ID: 29226920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel urchin-like FeCo oxide nanostructures supported carbon spheres as a highly sensitive sensor for hydrazine sensing application.
    Nguyen DM; Bach LG; Bui QB
    J Pharm Biomed Anal; 2019 Aug; 172():243-252. PubMed ID: 31071649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Facile Synthesis of Bio-Templated Tubular Co₃O₄ Microstructure and Its Electrochemical Performance in Aqueous Electrolytes.
    Guragain D; Zequine C; Poudel T; Neupane D; Gupta RK; Mishra SR
    J Nanosci Nanotechnol; 2020 May; 20(5):3182-3194. PubMed ID: 31635663
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of Co₃O₄ Cotton-Like Nanostructures for Cholesterol Biosensor.
    Elhag S; Ibupoto ZH; Nour O; Willander M
    Materials (Basel); 2014 Dec; 8(1):149-161. PubMed ID: 28787929
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D Network and 2D Paper of Reduced Graphene Oxide/Cu
    Cheng C; Zhang C; Gao X; Zhuang Z; Du C; Chen W
    Anal Chem; 2018 Feb; 90(3):1983-1991. PubMed ID: 29286638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of Honeycomb-Like Co₃O₄ Nanosheets with Excellent Supercapacitive Performance by Morphological Controlling Derived from the Alkaline Source Ratio.
    Jia W; Li J; Lu Z; Juan Y; Jiang Y
    Materials (Basel); 2018 Aug; 11(9):. PubMed ID: 30158510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. One-Step Electrodeposition of Silver Nanostructures on 2D/3D Metal-Organic Framework ZIF-67: Comparison and Application in Electrochemical Detection of Hydrogen Peroxide.
    Sun D; Yang D; Wei P; Liu B; Chen Z; Zhang L; Lu J
    ACS Appl Mater Interfaces; 2020 Sep; 12(37):41960-41968. PubMed ID: 32805814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Freestanding 3D mesoporous Co₃O₄@carbon foam nanostructures for ethanol gas sensing.
    Li L; Liu M; He S; Chen W
    Anal Chem; 2014 Aug; 86(15):7996-8002. PubMed ID: 25011608
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of CoO-Decorated Graphene Hollow Nanoballs for High-Performance Flexible Supercapacitors.
    Tseng CA; Sahoo PK; Lee CP; Lin YT; Xu JH; Chen YT
    ACS Appl Mater Interfaces; 2020 Sep; 12(36):40426-40432. PubMed ID: 32790275
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of Synthesis Temperature on the Growth and Surface Morphology of Co₃O₄ Nanocubes for Supercapacitor Applications.
    Samal R; Dash B; Sarangi CK; Sanjay K; Subbaiah T; Senanayake G; Minakshi M
    Nanomaterials (Basel); 2017 Oct; 7(11):. PubMed ID: 29088061
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemical sensor for detection of hydrazine based on Au@Pd core-shell nanoparticles supported on amino-functionalized TiO2 nanotubes.
    Chen X; Liu W; Tang L; Wang J; Pan H; Du M
    Mater Sci Eng C Mater Biol Appl; 2014 Jan; 34():304-10. PubMed ID: 24268262
    [TBL] [Abstract][Full Text] [Related]  

  • 16.
    Ali T; Mohyuddin S; Ali G; Khan M; Iqbal S; Maqbool M; Cho SO
    Nanotechnology; 2021 May; 32(31):. PubMed ID: 33873159
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical study of hydrazine oxidation by leaf-shaped copper oxide loaded on highly ordered mesoporous carbon composite.
    Wang L; Meng T; Jia H; Feng Y; Gong T; Wang H; Zhang Y
    J Colloid Interface Sci; 2019 Aug; 549():98-104. PubMed ID: 31026767
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensitive and selective non-enzymatic detection of glucose by monodispersed NiO @ S-doped hollow carbon sphere hybrid nanostructures.
    Madhuvilakku R; Mariappan R; Alagar S; Piraman S
    Anal Chim Acta; 2018 Dec; 1042():93-108. PubMed ID: 30428993
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stable and sustainable photoanodes using zinc oxide and cobalt oxide chemically gradient nanostructures for water-splitting applications.
    Nandanapalli KR; Mudusu D; Yu JS; Lee S
    J Colloid Interface Sci; 2020 Jan; 558():9-20. PubMed ID: 31580955
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly sensitive detection of glucose at a novel non-enzyme electrochemical sensing based on Mo-doped CoO Nanosheets.
    Xia P; Pan J; Zhang Y; Mao M; Ma L; Chen J; Zhang L; Wang H; Fan H; Gao X; Deng L
    Chem Asian J; 2024 Jan; 19(2):e202300951. PubMed ID: 38105351
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.