These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
480 related articles for article (PubMed ID: 29382315)
1. Genetic engineering of Escherichia coli to improve L-phenylalanine production. Liu Y; Xu Y; Ding D; Wen J; Zhu B; Zhang D BMC Biotechnol; 2018 Jan; 18(1):5. PubMed ID: 29382315 [TBL] [Abstract][Full Text] [Related]
2. Phosphoenolpyruvate:glucose phosphotransferase system modification increases the conversion rate during L-tryptophan production in Escherichia coli. Liu L; Chen S; Wu J J Ind Microbiol Biotechnol; 2017 Oct; 44(10):1385-1395. PubMed ID: 28726163 [TBL] [Abstract][Full Text] [Related]
3. Application of Dynamic Regulation to Increase L-Phenylalanine Production in Wu J; Liu Y; Zhao S; Sun J; Jin Z; Zhang D J Microbiol Biotechnol; 2019 Jun; 29(6):923-932. PubMed ID: 31154747 [TBL] [Abstract][Full Text] [Related]
4. Improvement of L-phenylalanine production from glycerol by recombinant Escherichia coli strains: the role of extra copies of glpK, glpX, and tktA genes. Gottlieb K; Albermann C; Sprenger GA Microb Cell Fact; 2014 Jul; 13(1):96. PubMed ID: 25012491 [TBL] [Abstract][Full Text] [Related]
5. Metabolic engineering and protein directed evolution increase the yield of L-phenylalanine synthesized from glucose in Escherichia coli. Báez-Viveros JL; Osuna J; Hernández-Chávez G; Soberón X; Bolívar F; Gosset G Biotechnol Bioeng; 2004 Aug; 87(4):516-24. PubMed ID: 15286989 [TBL] [Abstract][Full Text] [Related]
6. Pathway engineering for the production of aromatic compounds in Escherichia coli. Flores N; Xiao J; Berry A; Bolivar F; Valle F Nat Biotechnol; 1996 May; 14(5):620-3. PubMed ID: 9630954 [TBL] [Abstract][Full Text] [Related]
7. Disruption of a global regulatory gene to enhance central carbon flux into phenylalanine biosynthesis in Escherichia coli. Tatarko M; Romeo T Curr Microbiol; 2001 Jul; 43(1):26-32. PubMed ID: 11375660 [TBL] [Abstract][Full Text] [Related]
8. Rerouting carbon flux for optimized biosynthesis of mesaconate in Escherichia coli. Wang J; Wang J; Tai YS; Zhang Q; Bai W; Zhang K Appl Microbiol Biotechnol; 2018 Sep; 102(17):7377-7388. PubMed ID: 29926142 [TBL] [Abstract][Full Text] [Related]
9. Genome engineering Escherichia coli for L-DOPA overproduction from glucose. Wei T; Cheng BY; Liu JZ Sci Rep; 2016 Jul; 6():30080. PubMed ID: 27417146 [TBL] [Abstract][Full Text] [Related]
10. Growth recovery on glucose under aerobic conditions of an Escherichia coli strain carrying a phosphoenolpyruvate:carbohydrate phosphotransferase system deletion by inactivating arcA and overexpressing the genes coding for glucokinase and galactose permease. Flores N; Leal L; Sigala JC; de Anda R; Escalante A; Martínez A; Ramírez OT; Gosset G; Bolivar F J Mol Microbiol Biotechnol; 2007; 13(1-3):105-16. PubMed ID: 17693718 [TBL] [Abstract][Full Text] [Related]
11. Recruiting alternative glucose utilization pathways for improving succinate production. Tang J; Zhu X; Lu J; Liu P; Xu H; Tan Z; Zhang X Appl Microbiol Biotechnol; 2013 Mar; 97(6):2513-20. PubMed ID: 22895848 [TBL] [Abstract][Full Text] [Related]
12. Introduction of a stress-responsive gene, yggG, enhances the yield of L-phenylalanine with decreased acetic acid production in a recombinant Escherichia coli. Ojima Y; Komaki M; Nishioka M; Iwatani S; Tsujimoto N; Taya M Biotechnol Lett; 2009 Apr; 31(4):525-30. PubMed ID: 19125225 [TBL] [Abstract][Full Text] [Related]
13. Transcriptomics and metabolomics analysis of L-phenylalanine overproduction in Escherichia coli. Sun W; Ding D; Bai D; Lin Y; Zhu Y; Zhang C; Zhang D Microb Cell Fact; 2023 Apr; 22(1):65. PubMed ID: 37024921 [TBL] [Abstract][Full Text] [Related]
14. Expression of galP and glk in a Escherichia coli PTS mutant restores glucose transport and increases glycolytic flux to fermentation products. Hernández-Montalvo V; Martínez A; Hernández-Chavez G; Bolivar F; Valle F; Gosset G Biotechnol Bioeng; 2003 Sep; 83(6):687-94. PubMed ID: 12889033 [TBL] [Abstract][Full Text] [Related]
15. [Knockout of tyrR gene in Escherichia coli and its effects on the phenylalanine biosynthesis]. Shang L; Fan CS; Jin RL; Liu DX; Wang JG; Yin J; Song DX Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai); 2003 Aug; 35(8):728-33. PubMed ID: 12897968 [TBL] [Abstract][Full Text] [Related]
17. Combinatorial modulation of galP and glk gene expression for improved alternative glucose utilization. Lu J; Tang J; Liu Y; Zhu X; Zhang T; Zhang X Appl Microbiol Biotechnol; 2012 Mar; 93(6):2455-62. PubMed ID: 22159736 [TBL] [Abstract][Full Text] [Related]
18. L-tyrosine production by deregulated strains of Escherichia coli. Lütke-Eversloh T; Stephanopoulos G Appl Microbiol Biotechnol; 2007 May; 75(1):103-10. PubMed ID: 17221195 [TBL] [Abstract][Full Text] [Related]
19. Metabolic engineering for the production of shikimic acid in an evolved Escherichia coli strain lacking the phosphoenolpyruvate: carbohydrate phosphotransferase system. Escalante A; Calderón R; Valdivia A; de Anda R; Hernández G; Ramírez OT; Gosset G; Bolívar F Microb Cell Fact; 2010 Apr; 9():21. PubMed ID: 20385022 [TBL] [Abstract][Full Text] [Related]
20. Inactivation of the PTS as a Strategy to Engineer the Production of Aromatic Metabolites in Escherichia coli. Carmona SB; Moreno F; Bolívar F; Gosset G; Escalante A J Mol Microbiol Biotechnol; 2015; 25(2-3):195-208. PubMed ID: 26159079 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]