BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 29382574)

  • 1. Dynamic regulation of six histone H3 lysine (K) methyltransferases in response to prolonged anoxia exposure in a freshwater turtle.
    Wijenayake S; Hawkins LJ; Storey KB
    Gene; 2018 Apr; 649():50-57. PubMed ID: 29382574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic regulation of histone H3 lysine (K) acetylation and deacetylation during prolonged oxygen deprivation in a champion anaerobe.
    Wijenayake S; Storey KB
    Mol Cell Biochem; 2020 Nov; 474(1-2):229-241. PubMed ID: 32729004
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anoxia-responsive regulation of the FoxO transcription factors in freshwater turtles, Trachemys scripta elegans.
    Krivoruchko A; Storey KB
    Biochim Biophys Acta; 2013 Nov; 1830(11):4990-8. PubMed ID: 23850471
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of p53 by reversible post-transcriptional and post-translational mechanisms in liver and skeletal muscle of an anoxia tolerant turtle, Trachemys scripta elegans.
    Zhang J; Biggar KK; Storey KB
    Gene; 2013 Jan; 513(1):147-55. PubMed ID: 23124036
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein lysine methylation in the regulation of anoxia tolerance in the red eared slider turtle, Trachemys scripta elegans.
    Biggar KK
    Comp Biochem Physiol Part D Genomics Proteomics; 2020 Jun; 34():100660. PubMed ID: 32066095
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of DNA methylation during anoxia tolerance in a freshwater turtle (Trachemys scripta elegans).
    Wijenayake S; Storey KB
    J Comp Physiol B; 2016 Apr; 186(3):333-42. PubMed ID: 26843075
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Response of the JAK-STAT signaling pathway to oxygen deprivation in the red eared slider turtle, Trachemys scripta elegans.
    Bansal S; Biggar KK; Krivoruchko A; Storey KB
    Gene; 2016 Nov; 593(1):34-40. PubMed ID: 27502419
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidative Damage? Not a Problem! The Characterization of Humanin-like Mitochondrial Peptide in Anoxia Tolerant Freshwater Turtles.
    Wijenayake S; Storey KB
    Protein J; 2021 Feb; 40(1):87-107. PubMed ID: 33387248
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mixed lineage leukemia: histone H3 lysine 4 methyltransferases from yeast to human.
    Malik S; Bhaumik SR
    FEBS J; 2010 Apr; 277(8):1805-21. PubMed ID: 20236312
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activation of the carbohydrate response element binding protein (ChREBP) in response to anoxia in the turtle Trachemys scripta elegans.
    Krivoruchko A; Storey KB
    Biochim Biophys Acta; 2014 Oct; 1840(10):3000-5. PubMed ID: 24931694
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Translational regulation in the anoxic turtle, Trachemys scripta elegans.
    Szereszewski KE; Storey KB
    Mol Cell Biochem; 2018 Aug; 445(1-2):13-23. PubMed ID: 29243067
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Specificity of protein lysine methyltransferases and methods for detection of lysine methylation of non-histone proteins.
    Rathert P; Dhayalan A; Ma H; Jeltsch A
    Mol Biosyst; 2008 Dec; 4(12):1186-90. PubMed ID: 19396382
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methylation of histone H3 at lysine 4 is highly conserved and correlates with transcriptionally active nuclei in Tetrahymena.
    Strahl BD; Ohba R; Cook RG; Allis CD
    Proc Natl Acad Sci U S A; 1999 Dec; 96(26):14967-72. PubMed ID: 10611321
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trimethylated lysine 9 of histone H3 is a mark for DNA methylation in Neurospora crassa.
    Tamaru H; Zhang X; McMillen D; Singh PB; Nakayama J; Grewal SI; Allis CD; Cheng X; Selker EU
    Nat Genet; 2003 May; 34(1):75-9. PubMed ID: 12679815
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New Insights to Regulation of Fructose-1,6-bisphosphatase during Anoxia in Red-Eared Slider,
    Gupta A; Varma A; Storey KB
    Biomolecules; 2021 Oct; 11(10):. PubMed ID: 34680181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Allosteric regulation of histone lysine methyltransferases: from context-specific regulation to selective drugs.
    Davidovich C; Zhang Q
    Biochem Soc Trans; 2021 Apr; 49(2):591-607. PubMed ID: 33769454
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial responses to anoxia exposure in red eared sliders (Trachemys scripta).
    Gomez CR; Richards JG
    Comp Biochem Physiol B Biochem Mol Biol; 2018 Oct; 224():71-78. PubMed ID: 29402754
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The engagement of histone lysine methyltransferases with nucleosomes: structural basis, regulatory mechanisms, and therapeutic implications.
    Li Y; Ge K; Li T; Cai R; Chen Y
    Protein Cell; 2023 Apr; 14(3):165-179. PubMed ID: 37051671
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Histone methylation in the freeze-tolerant wood frog (Rana sylvatica).
    Hawkins LJ; Storey KB
    J Comp Physiol B; 2018 Jan; 188(1):113-125. PubMed ID: 28601897
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Histone H3 lysine 4 methylation is mediated by Set1 and required for cell growth and rDNA silencing in Saccharomyces cerevisiae.
    Briggs SD; Bryk M; Strahl BD; Cheung WL; Davie JK; Dent SY; Winston F; Allis CD
    Genes Dev; 2001 Dec; 15(24):3286-95. PubMed ID: 11751634
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.