These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 29382925)
1. Macro-/Micro-Controlled 3D Lithium-Ion Batteries via Additive Manufacturing and Electric Field Processing. Li J; Liang X; Liou F; Park J Sci Rep; 2018 Jan; 8(1):1846. PubMed ID: 29382925 [TBL] [Abstract][Full Text] [Related]
2. Non-aqueous Electrode Processing and Construction of Lithium-ion Coin Cells. Stein M; Chen CF; Robles DJ; Rhodes C; Mukherjee PP J Vis Exp; 2016 Feb; (108):e53490. PubMed ID: 26863503 [TBL] [Abstract][Full Text] [Related]
3. Preparation of 3D nanoporous copper-supported cuprous oxide for high-performance lithium ion battery anodes. Liu D; Yang Z; Wang P; Li F; Wang D; He D Nanoscale; 2013 Mar; 5(5):1917-21. PubMed ID: 23354412 [TBL] [Abstract][Full Text] [Related]
4. Unravelling the correlation between the aspect ratio of nanotubular structures and their electrochemical performance to achieve high-rate and long-life lithium-ion batteries. Tang Y; Zhang Y; Deng J; Qi D; Leow WR; Wei J; Yin S; Dong Z; Yazami R; Chen Z; Chen X Angew Chem Int Ed Engl; 2014 Dec; 53(49):13488-92. PubMed ID: 25168684 [TBL] [Abstract][Full Text] [Related]
5. Sulfidated TiO2 nanotubes: a potential 3D cathode material for Li-ion micro batteries. Kyeremateng NA; Plylahan N; dos Santos AC; Taveira LV; Dick LF; Djenizian T Chem Commun (Camb); 2013 May; 49(39):4205-7. PubMed ID: 23165523 [TBL] [Abstract][Full Text] [Related]
6. Life cycle environmental impact of high-capacity lithium ion battery with silicon nanowires anode for electric vehicles. Li B; Gao X; Li J; Yuan C Environ Sci Technol; 2014; 48(5):3047-55. PubMed ID: 24483341 [TBL] [Abstract][Full Text] [Related]
7. Quantifying the environmental impact of a Li-rich high-capacity cathode material in electric vehicles via life cycle assessment. Wang Y; Yu Y; Huang K; Chen B; Deng W; Yao Y Environ Sci Pollut Res Int; 2017 Jan; 24(2):1251-1260. PubMed ID: 27770328 [TBL] [Abstract][Full Text] [Related]
8. Peanut-like MnO@C core-shell composites as anode electrodes for high-performance lithium ion batteries. Wang S; Ren Y; Liu G; Xing Y; Zhang S Nanoscale; 2014 Apr; 6(7):3508-12. PubMed ID: 24567164 [TBL] [Abstract][Full Text] [Related]
9. An interwoven network of MnO₂ nanowires and carbon nanotubes as the anode for bendable lithium-ion batteries. Ee SJ; Pang H; Mani U; Yan Q; Ting SL; Chen P Chemphyschem; 2014 Aug; 15(12):2445-9. PubMed ID: 24888436 [TBL] [Abstract][Full Text] [Related]
10. Synthesis of Fe3O4@C core-shell nanorings and their enhanced electrochemical performance for lithium-ion batteries. Wang L; Liang J; Zhu Y; Mei T; Zhang X; Yang Q; Qian Y Nanoscale; 2013 May; 5(9):3627-31. PubMed ID: 23519322 [TBL] [Abstract][Full Text] [Related]
11. In Situ Coating of Li[Ni0.33 Mn0.33 Co0.33 ]O2 Particles to Enable Aqueous Electrode Processing. Loeffler N; Kim GT; Mueller F; Diemant T; Kim JK; Behm RJ; Passerini S ChemSusChem; 2016 May; 9(10):1112-7. PubMed ID: 27098345 [TBL] [Abstract][Full Text] [Related]
12. An Effectively Activated Hierarchical Nano-/Microspherical Li1.2Ni0.2Mn0.6O2 Cathode for Long-Life and High-Rate Lithium-Ion Batteries. Li Y; Bai Y; Bi X; Qian J; Ma L; Tian J; Wu C; Wu F; Lu J; Amine K ChemSusChem; 2016 Apr; 9(7):728-35. PubMed ID: 26940745 [TBL] [Abstract][Full Text] [Related]
13. A Biodegradable Polydopamine-Derived Electrode Material for High-Capacity and Long-Life Lithium-Ion and Sodium-Ion Batteries. Sun T; Li ZJ; Wang HG; Bao D; Meng FL; Zhang XB Angew Chem Int Ed Engl; 2016 Aug; 55(36):10662-6. PubMed ID: 27485314 [TBL] [Abstract][Full Text] [Related]
14. Building one-dimensional oxide nanostructure arrays on conductive metal substrates for lithium-ion battery anodes. Jiang J; Li Y; Liu J; Huang X Nanoscale; 2011 Jan; 3(1):45-58. PubMed ID: 20978657 [TBL] [Abstract][Full Text] [Related]
15. A silicon nanowire-reduced graphene oxide composite as a high-performance lithium ion battery anode material. Ren JG; Wang C; Wu QH; Liu X; Yang Y; He L; Zhang W Nanoscale; 2014 Mar; 6(6):3353-60. PubMed ID: 24522297 [TBL] [Abstract][Full Text] [Related]
16. Improving the electrochemical performance of the li4 ti5 o12 electrode in a rechargeable magnesium battery by lithium-magnesium co-intercalation. Wu N; Yang ZZ; Yao HR; Yin YX; Gu L; Guo YG Angew Chem Int Ed Engl; 2015 May; 54(19):5757-61. PubMed ID: 25783632 [TBL] [Abstract][Full Text] [Related]
17. Synergistic Effect of Blended Components in Nonaqueous Electrolytes for Lithium Ion Batteries. Cekic-Laskovic I; von Aspern N; Imholt L; Kaymaksiz S; Oldiges K; Rad BR; Winter M Top Curr Chem (Cham); 2017 Apr; 375(2):37. PubMed ID: 28299728 [TBL] [Abstract][Full Text] [Related]
18. Direct large-scale synthesis of 3D hierarchical mesoporous NiO microspheres as high-performance anode materials for lithium ion batteries. bai Z; Ju Z; Guo C; Qian Y; Tang B; Xiong S Nanoscale; 2014 Mar; 6(6):3268-73. PubMed ID: 24509514 [TBL] [Abstract][Full Text] [Related]
19. Instant gelation synthesis of 3D porous MoS2@C nanocomposites for lithium ion batteries. Fei L; Xu Y; Wu X; Chen G; Li Y; Li B; Deng S; Smirnov S; Fan H; Luo H Nanoscale; 2014 Apr; 6(7):3664-9. PubMed ID: 24567121 [TBL] [Abstract][Full Text] [Related]
20. Highly reversible open framework nanoscale electrodes for divalent ion batteries. Wang RY; Wessells CD; Huggins RA; Cui Y Nano Lett; 2013; 13(11):5748-52. PubMed ID: 24147617 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]