BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 29383645)

  • 1. Regenerable, innovative porous silicon-based polymer-derived ceramics for removal of methylene blue and rhodamine B from textile and environmental waters.
    Bruzzoniti MC; Appendini M; Onida B; Castiglioni M; Del Bubba M; Vanzetti L; Jana P; Sorarù GD; Rivoira L
    Environ Sci Pollut Res Int; 2018 Apr; 25(11):10619-10629. PubMed ID: 29383645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GO-CuO nanocomposites assimilated into CA-PES polymer membrane in adsorptive removal of organic dyes from wastewater.
    Natesan G; Rajappan K
    Environ Sci Pollut Res Int; 2023 Mar; 30(15):42658-42678. PubMed ID: 35821317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast and effective removal of textile dyes from the wastewater using reusable porous nano-carbons: a study on adsorptive parameters and isotherms.
    Krishnappa B; Saravu S; Shivanna JM; Naik M; Hegde G
    Environ Sci Pollut Res Int; 2022 Nov; 29(52):79067-79081. PubMed ID: 35704233
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mixed titanium, silicon, and aluminum oxide nanostructures as novel adsorbent for removal of rhodamine 6G and methylene blue as cationic dyes from aqueous solution.
    Pal U; Sandoval A; Madrid SIU; Corro G; Sharma V; Mohanty P
    Chemosphere; 2016 Nov; 163():142-152. PubMed ID: 27529381
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methylene blue removal by carbonized textile sludge-based adsorbent.
    Rahman A; Kishimoto N; Urabe T; Ikeda K
    Water Sci Technol; 2017 Dec; 76(11-12):3126-3134. PubMed ID: 29210698
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sorption isotherms, kinetic and optimization process of amino acid proline based polymer nanocomposite for the removal of selected textile dyes from industrial wastewater.
    Raghunath S; Anand K; Gengan RM; Nayunigari MK; Maity A
    J Photochem Photobiol B; 2016 Dec; 165():189-201. PubMed ID: 27835745
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elimination of textile dyes using activated carbons prepared from vegetable residues and their characterization.
    Peláez-Cid AA; Herrera-González AM; Salazar-Villanueva M; Bautista-Hernández A
    J Environ Manage; 2016 Oct; 181():269-278. PubMed ID: 27372249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced removal of methylene blue and methyl violet dyes from aqueous solution using a nanocomposite of hydrolyzed polyacrylamide grafted xanthan gum and incorporated nanosilica.
    Ghorai S; Sarkar A; Raoufi M; Panda AB; Schönherr H; Pal S
    ACS Appl Mater Interfaces; 2014 Apr; 6(7):4766-77. PubMed ID: 24579659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of gum ghatti-g-poly(itaconic acid) magnetite nanocomposite as an adsorbent material for water purification.
    Kulal P; Badalamoole V
    Int J Biol Macromol; 2021 Dec; 193(Pt B):2232-2242. PubMed ID: 34780891
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effective mitigation of single-component and mixed textile dyes from aqueous media using recyclable graphene-based nanocomposite.
    Tran TV; Vo DN; Nguyen DTC; Ching YC; Nguyen NT; Nguyen QT
    Environ Sci Pollut Res Int; 2022 May; 29(21):32120-32141. PubMed ID: 35013974
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Turning calcium carbonate into a cost-effective wastewater-sorbing material by occluding waste dye.
    Zhao DH; Gao HW
    Environ Sci Pollut Res Int; 2010 Jan; 17(1):97-105. PubMed ID: 19263103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutual effects behind the simultaneous removal of toxic metals and cationic dyes by interlayer-expanded MoS
    Wu Z; Duan Q; Li X; Li J
    Environ Sci Pollut Res Int; 2019 Oct; 26(30):31344-31353. PubMed ID: 31471849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Green synthesis of palm oil mill effluent-based graphenic adsorbent for the treatment of dye-contaminated wastewater.
    Teow YH; Nordin NI; Mohammad AW
    Environ Sci Pollut Res Int; 2019 Nov; 26(33):33747-33757. PubMed ID: 29754300
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adsorption of a textile dye onto piaçava fibers: kinetic, equilibrium, thermodynamics, and application in simulated effluents.
    Marques BS; Frantz TS; Sant'Anna Cadaval Junior TR; de Almeida Pinto LA; Dotto GL
    Environ Sci Pollut Res Int; 2019 Oct; 26(28):28584-28592. PubMed ID: 30377973
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removal of textile dyes and metallic ions using polyelectrolytes and macroelectrolytes containing sulfonic acid groups.
    Caldera Villalobos M; Peláez Cid AA; Herrera González AM
    J Environ Manage; 2016 Jul; 177():65-73. PubMed ID: 27082258
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrating adsorption and photocatalysis: A cost effective strategy for textile wastewater treatment using hybrid biochar-TiO
    Fazal T; Razzaq A; Javed F; Hafeez A; Rashid N; Amjad US; Ur Rehman MS; Faisal A; Rehman F
    J Hazard Mater; 2020 May; 390():121623. PubMed ID: 31753670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced photocatalytic activity of ZnO/CuO nanocomposite for the degradation of textile dye on visible light illumination.
    Saravanan R; Karthikeyan S; Gupta VK; Sekaran G; Narayanan V; Stephen A
    Mater Sci Eng C Mater Biol Appl; 2013 Jan; 33(1):91-8. PubMed ID: 25428048
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ginger Straw Waste-Derived Porous Carbons as Effective Adsorbents toward Methylene Blue.
    Zhang W; Li H; Tang J; Lu H; Liu Y
    Molecules; 2019 Jan; 24(3):. PubMed ID: 30696112
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of cress seed musilage magnetic nanocomposites for removal of methylene blue dye from water.
    Allafchian A; Mousavi ZS; Hosseini SS
    Int J Biol Macromol; 2019 Sep; 136():199-208. PubMed ID: 31201917
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Treatment of a simulated textile wastewater in a sequencing batch reactor (SBR) with addition of a low-cost adsorbent.
    Santos SC; Boaventura RA
    J Hazard Mater; 2015 Jun; 291():74-82. PubMed ID: 25768990
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.