These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 29383796)

  • 1. Structural Change of a Single Ag Nanoparticle Observed by Dark-field Microspectroscopy.
    Pang J; Liu HL; Li J; Zhai TT; Wang K; Xia XH
    Chemphyschem; 2018 Apr; 19(8):954-958. PubMed ID: 29383796
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Screening sensitive nanosensors via the investigation of shape-dependent localized surface plasmon resonance of single Ag nanoparticles.
    Liu Y; Huang CZ
    Nanoscale; 2013 Aug; 5(16):7458-66. PubMed ID: 23831964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Appearance of SERS activity in single silver nanoparticles by laser-induced reshaping.
    Chaudhari K; Ahuja T; Murugesan V; Subramanian V; Ganayee MA; Thundat T; Pradeep T
    Nanoscale; 2018 Dec; 11(1):321-330. PubMed ID: 30534777
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-time monitoring of the aging of single plasmonic copper nanoparticles.
    Qin LX; Jing C; Li Y; Li DW; Long YT
    Chem Commun (Camb); 2012 Feb; 48(10):1511-3. PubMed ID: 21975600
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmon resonance scattering spectroscopy at the single-nanoparticle level: real-time monitoring of a click reaction.
    Shi L; Jing C; Ma W; Li DW; Halls JE; Marken F; Long YT
    Angew Chem Int Ed Engl; 2013 Jun; 52(23):6011-4. PubMed ID: 23616358
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Silver-nanoparticle-attached indium tin oxide surfaces fabricated by a seed-mediated growth approach.
    Chang G; Zhang J; Oyama M; Hirao K
    J Phys Chem B; 2005 Jan; 109(3):1204-9. PubMed ID: 16851082
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dark-field spectroscopy: development, applications and perspectives in single nanoparticle catalysis.
    Wang H; Zhang T; Zhou X
    J Phys Condens Matter; 2019 Nov; 31(47):473001. PubMed ID: 31315095
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inconspicuous Reactions Identified by Improved Precision of Plasmonic Scattering Dark-Field Microscopy Imaging Using Silver Shell-Isolated Nanoparticles as Internal References.
    Feng W; He W; Zhou J; Gu XY; Li YF; Huang CZ
    Anal Chem; 2019 Feb; 91(4):3002-3008. PubMed ID: 30689355
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A galvanic exchange process visualized on single silver nanoparticles via dark-field microscopy imaging.
    Zhou J; Yang T; He W; Pan ZY; Huang CZ
    Nanoscale; 2018 Jul; 10(26):12805-12812. PubMed ID: 29947404
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potential targetability of multi-walled carbon nanotube loaded with silver nanoparticles photosynthesized from Ocimum tenuiflorum (tulsi extract) in fertility diagnosis.
    Jha PK; Jha RK; Rout D; Gnanasekar S; Rana SVS; Hossain M
    J Drug Target; 2017 Aug; 25(7):616-625. PubMed ID: 28294638
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single plasmonic nanoparticles as ultrasensitive sensors.
    Xie T; Jing C; Long YT
    Analyst; 2017 Jan; 142(3):409-420. PubMed ID: 28004043
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Operando Studies of the Electrochemical Dissolution of Silver Nanoparticles in Nitrate Solutions Observed With Hyperspectral Dark-Field Microscopy.
    Wonner K; Rurainsky C; Tschulik K
    Front Chem; 2019; 7():912. PubMed ID: 32010665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. One-Shot Dual-Code Immunotargeting for Ultra-Sensitive Tumor Necrosis Factor-α Nanosensors by 3D Enhanced Dark-Field Super-Resolution Microscopy.
    Ju S; Lee S; Chakkarapani SK; Kim K; Yu H; Kang SH
    Anal Chem; 2018 Apr; 90(8):5100-5107. PubMed ID: 29565566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Silver release from silver nanoparticles in natural waters.
    Dobias J; Bernier-Latmani R
    Environ Sci Technol; 2013 May; 47(9):4140-6. PubMed ID: 23517230
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biosynthesis and structural characterization of Ag nanoparticles from white rot fungi.
    Chan YS; Mat Don M
    Mater Sci Eng C Mater Biol Appl; 2013 Jan; 33(1):282-8. PubMed ID: 25428073
    [TBL] [Abstract][Full Text] [Related]  

  • 16. One-Pot Synthesis of Icosahedral Silver Nanoparticles by Using a Photoassisted Tartrate Reduction Method under UV Light with a Wavelength of 310 nm.
    Xie ZX; Tzeng WC; Huang CL
    Chemphyschem; 2016 Aug; 17(16):2551-7. PubMed ID: 27129025
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectroelectrochemistry of Silver Deposition on Single Gold Nanocrystals.
    Chirea M; Collins SS; Wei X; Mulvaney P
    J Phys Chem Lett; 2014 Dec; 5(24):4331-5. PubMed ID: 26273983
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new mechanism for resonance Rayleigh scattering detection of minoxidil based on catalytic oxidation of silver nanoparticles.
    Teerasong S; Praditweangkum W; Chompoosor A
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Jul; 275():121147. PubMed ID: 35306307
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface-enhanced Raman spectroscopy for DNA detection by the self-assembly of Ag nanoparticles onto Ag nanoparticle-graphene oxide nanocomposites.
    Lin TW; Wu HY; Tasi TT; Lai YH; Shen HH
    Phys Chem Chem Phys; 2015 Jul; 17(28):18443-8. PubMed ID: 26106968
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tuning of Ag Nanoparticle Properties in Cellulose Nanocrystals/Ag Nanoparticle Hybrid Suspensions by H
    Musino D; Rivard C; Novales B; Landrot G; Capron I
    Nanomaterials (Basel); 2020 Aug; 10(8):. PubMed ID: 32784401
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.