These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 29384366)

  • 21. Computational and Investigative Study of Flavonoids Active Against Typanosoma cruzi and Leishmania spp.
    Ribeiro FF; Junior FJ; da Silva MS; Scotti MT; Scotti L
    Nat Prod Commun; 2015 Jun; 10(6):917-20. PubMed ID: 26197515
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Investigation of plant extracts in traditional medicine of the Brazilian Cerrado against protozoans and yeasts.
    Albernaz LC; de Paula JE; Romero GA; Silva Mdo R; Grellier P; Mambu L; Espindola LS
    J Ethnopharmacol; 2010 Aug; 131(1):116-21. PubMed ID: 20600775
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In vitro antiprotozoal activity of (S)-cis-Verbenol against Leishmania spp. and Trypanosoma cruzi.
    Yaluff G; Vega C; Alvarenga N
    Acta Trop; 2017 Apr; 168():41-44. PubMed ID: 28062234
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development and validation of four Leishmania species constitutively expressing GFP protein. A model for drug discovery and disease pathogenesis studies.
    Patel AP; Deacon A; Getti G
    Parasitology; 2014 Apr; 141(4):501-10. PubMed ID: 24252638
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synthesis of quinoline derivatives as potential cysteine protease inhibitors.
    Andrade MM; Martins LC; Marques GV; Silva CA; Faria G; Caldas S; Dos Santos JS; Leclercq SY; Maltarollo VG; Ferreira RS; Oliveira RB
    Future Med Chem; 2020 Apr; 12(7):571-581. PubMed ID: 32116030
    [No Abstract]   [Full Text] [Related]  

  • 26. A single amino acid substitution (H451Y) in Leishmania calcium-dependent kinase SCAMK confers high tolerance and resistance to antimony.
    Vergnes B; Gazanion E; Mariac C; Du Manoir M; Sollelis L; Lopez-Rubio JJ; Sterkers Y; Bañuls AL
    J Antimicrob Chemother; 2019 Nov; 74(11):3231-3239. PubMed ID: 31365085
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Essential gene identification and drug target prioritization in Leishmania species.
    Paul ML; Kaur A; Geete A; Sobhia ME
    Mol Biosyst; 2014 May; 10(5):1184-95. PubMed ID: 24643243
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Exploring the Trypanosoma brucei Hsp83 potential as a target for structure guided drug design.
    Pizarro JC; Hills T; Senisterra G; Wernimont AK; Mackenzie C; Norcross NR; Ferguson MA; Wyatt PG; Gilbert IH; Hui R
    PLoS Negl Trop Dis; 2013; 7(10):e2492. PubMed ID: 24147171
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Leishmaniasis: efflux pumps and chemoresistance.
    Leandro C; Campino L
    Int J Antimicrob Agents; 2003 Sep; 22(3):352-7. PubMed ID: 13678842
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recent advances in identifying and validating drug targets in trypanosomes and leishmanias.
    Barrett MP; Mottram JC; Coombs GH
    Trends Microbiol; 1999 Feb; 7(2):82-8. PubMed ID: 10081086
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of a Fluorescence-based Trypanosoma cruzi CYP51 Inhibition Assay for Effective Compound Triaging in Drug Discovery Programmes for Chagas Disease.
    Riley J; Brand S; Voice M; Caballero I; Calvo D; Read KD
    PLoS Negl Trop Dis; 2015 Sep; 9(9):e0004014. PubMed ID: 26394211
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Glycobiology of the Leishmania parasite and emerging targets for antileishmanial drug discovery.
    Chandra S; Ruhela D; Deb A; Vishwakarma RA
    Expert Opin Ther Targets; 2010 Jul; 14(7):739-57. PubMed ID: 20536412
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Foreword. Trypanosomatid disease drug discovery and target identification.
    N Setzer W
    Future Med Chem; 2013 Oct; 5(15):1703-4. PubMed ID: 24144406
    [No Abstract]   [Full Text] [Related]  

  • 34. Intracellular growth and metacyclogenesis defects in Trypanosoma cruzi carrying a targeted deletion of a Tc52 protein-encoding allele.
    Allaoui A; François C; Zemzoumi K; Guilvard E; Ouaissi A
    Mol Microbiol; 1999 Jun; 32(6):1273-86. PubMed ID: 10383767
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phytochemical and antiprotozoal activity of Ocotea lancifolia.
    Fournet A; Ferreira ME; Rojas de Arias A; Guy I; Guinaudeau H; Heinzen H
    Fitoterapia; 2007 Jul; 78(5):382-4. PubMed ID: 17499454
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Anilinoquinoline based inhibitors of trypanosomatid proliferation.
    Ferrins L; Sharma A; Thomas SM; Mehta N; Erath J; Tanghe S; Leed SE; Rodriguez A; Mensa-Wilmot K; Sciotti RJ; Gillingwater K; Pollastri MP
    PLoS Negl Trop Dis; 2018 Nov; 12(11):e0006834. PubMed ID: 30475800
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Thiol redox biology of trypanosomatids and potential targets for chemotherapy.
    Leroux AE; Krauth-Siegel RL
    Mol Biochem Parasitol; 2016; 206(1-2):67-74. PubMed ID: 26592324
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Widespread Anti-Protozoal Action of HIV Aspartic Peptidase Inhibitors: Focus on Plasmodium spp., Leishmania spp. and Trypanosoma cruzi.
    Santos AL; d'Avila-Levy CM; Kneipp LF; Sodré CL; Sangenito LS; Branquinha MH
    Curr Top Med Chem; 2017; 17(11):1303-1317. PubMed ID: 27784256
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Neglected tropical diseases: multi-target-directed ligands in the search for novel lead candidates against Trypanosoma and Leishmania.
    Cavalli A; Bolognesi ML
    J Med Chem; 2009 Dec; 52(23):7339-59. PubMed ID: 19606868
    [No Abstract]   [Full Text] [Related]  

  • 40. A chemical inhibitor of heat shock protein 78 (HSP78) from
    Das S; Banerjee A; Kamran M; Ejazi SA; Asad M; Ali N; Chakrabarti S
    J Biol Chem; 2020 Jul; 295(29):9934-9947. PubMed ID: 32471865
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.