These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 29384495)

  • 1. Novel photocatalyst gold nanoparticles with dumbbell-like structure and their superiorly photocatalytic performance for ammonia borane hydrolysis.
    Zhu M; Dai Y; Fu W; Wu Y; Zou X; You T; Sun Y
    Nanotechnology; 2018 Jan; ():. PubMed ID: 29384495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing multifunctional azure B conjugated gold nanoparticles with serum protein binding properties for trimodal photothermal, photodynamic, and chemo therapy: Biophysical and photophysical investigations.
    Sonia ; Singh A; Shivangi ; Kukreti R; Kukreti S; Kaushik M
    Biomater Adv; 2022 Mar; 134():112678. PubMed ID: 35606220
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bimetallic Au-Ni nanoparticles embedded in SiO2 nanospheres: synergetic catalysis in hydrolytic dehydrogenation of ammonia borane.
    Jiang HL; Umegaki T; Akita T; Zhang XB; Haruta M; Xu Q
    Chemistry; 2010 Mar; 16(10):3132-7. PubMed ID: 20127771
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Facile Synthesis of Monodispersed Co Nanoparticles on Titanium Carbides for Hydrolysis of Ammonia Borane at Mild Temperature.
    Liu T; Wang QT; Sun YH; Zhao M
    J Nanosci Nanotechnol; 2019 Nov; 19(11):7392-7397. PubMed ID: 31039902
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graphene-Supported Trimetallic Core-Shell Cu@CoNi Nanoparticles for Catalytic Hydrolysis of Amine Borane.
    Meng X; Yang L; Cao N; Du C; Hu K; Su J; Luo W; Cheng G
    Chempluschem; 2014 Feb; 79(2):325-332. PubMed ID: 31986590
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Graphene-supported Ag-based core-shell nanoparticles for hydrogen generation in hydrolysis of ammonia borane and methylamine borane.
    Yang L; Luo W; Cheng G
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):8231-40. PubMed ID: 23927435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Green light-driven enhanced ammonia sensing at room temperature based on seed-mediated growth of gold-ferrosoferric oxide dumbbell-like heteronanostructures.
    Yu S; Zhang D; Zhang Y; Pan W; Meteku BE; Zhang F; Zeng J
    Nanoscale; 2020 Sep; 12(36):18815-18825. PubMed ID: 32970068
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of mercury ions based on mercury-induced switching of enzyme-like activity of platinum/gold nanoparticles.
    Tseng CW; Chang HY; Chang JY; Huang CC
    Nanoscale; 2012 Nov; 4(21):6823-30. PubMed ID: 23011048
    [TBL] [Abstract][Full Text] [Related]  

  • 9. One-pot synthesis of core-shell Cu@SiO2 nanospheres and their catalysis for hydrolytic dehydrogenation of ammonia borane and hydrazine borane.
    Yao Q; Lu ZH; Zhang Z; Chen X; Lan Y
    Sci Rep; 2014 Dec; 4():7597. PubMed ID: 25534772
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synergetic effect of Au nanoparticles and transition metal phosphides for enhanced hydrogen evolution from ammonia-borane.
    Asim M; Maryam B; Zhang S; Sajid M; Kurbanov A; Pan L; Zou JJ
    J Colloid Interface Sci; 2023 May; 638():14-25. PubMed ID: 36731215
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Size-dependent theoretical and experimental photothermal conversion efficiency of spherical gold nanoparticles.
    Depciuch J; Stec M; Maximienko A; Baran J; Parlinska-Wojtan M
    Photodiagnosis Photodyn Ther; 2022 Sep; 39():102979. PubMed ID: 35728753
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of Ni-Ru alloy nanoparticles and their high catalytic activity in dehydrogenation of ammonia borane.
    Chen G; Desinan S; Rosei R; Rosei F; Ma D
    Chemistry; 2012 Jun; 18(25):7925-30. PubMed ID: 22539444
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hexagonal CuCo₂O₄ Nanoplatelets, a Highly Active Catalyst for the Hydrolysis of Ammonia Borane for Hydrogen Production.
    Liao J; Feng Y; Wu S; Ye H; Zhang J; Zhang X; Xie F; Li H
    Nanomaterials (Basel); 2019 Mar; 9(3):. PubMed ID: 30836644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hyper-cross-linked polymer supported rhodium: an effective catalyst for hydrogen evolution from ammonia borane.
    Xu C; Hu M; Wang Q; Fan G; Wang Y; Zhang Y; Gao D; Bi J
    Dalton Trans; 2018 Feb; 47(8):2561-2567. PubMed ID: 29384536
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New pathway to prepare gold nanoparticles and their applications in catalysis and surface-enhanced Raman scattering.
    Chang CC; Yang KH; Liu YC; Hsu TC
    Colloids Surf B Biointerfaces; 2012 May; 93():169-73. PubMed ID: 22244302
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Construction of cost-effective bimetallic nanoparticles on titanium carbides as a superb catalyst for promoting hydrolysis of ammonia borane.
    Guo Z; Liu T; Wang Q; Gao G
    RSC Adv; 2018 Jan; 8(2):843-847. PubMed ID: 35538985
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional Group Regulated Ni/Ti
    Mo B; Li S; Wen H; Zhang H; Zhang H; Wu J; Li B; Hou H
    ACS Appl Mater Interfaces; 2022 Apr; 14(14):16320-16329. PubMed ID: 35352551
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cux Co1-x O Nanoparticles on Graphene Oxide as A Synergistic Catalyst for High-Efficiency Hydrolysis of Ammonia-Borane.
    Feng K; Zhong J; Zhao B; Zhang H; Xu L; Sun X; Lee ST
    Angew Chem Int Ed Engl; 2016 Sep; 55(39):11950-4. PubMed ID: 27532345
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and characterization of Au core-Au-Ag shell nanoparticles from gold seeds: impacts of glycine concentration and pH.
    Huang YF; Huang KM; Chang HT
    J Colloid Interface Sci; 2006 Sep; 301(1):145-54. PubMed ID: 16777126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrathin Oxide Layer-Wrapped Noble Metal Nanoparticles via Colloidal Electrostatic Self-Assembly for Efficient and Reusable Surface Enhanced Raman Scattering Substrates.
    Bao H; Zhang H; Zhou L; Liu G; Li Y; Cai W
    Langmuir; 2017 Nov; 33(45):12934-12942. PubMed ID: 29061051
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.