These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 29384683)

  • 1. Surface Adsorption of Suwannee River Humic Acid on TiO
    Jayalath S; Wu H; Larsen SC; Grassian VH
    Langmuir; 2018 Mar; 34(9):3136-3145. PubMed ID: 29384683
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TiO2 nanoparticles aggregation and disaggregation in presence of alginate and Suwannee River humic acids. pH and concentration effects on nanoparticle stability.
    Loosli F; Le Coustumer P; Stoll S
    Water Res; 2013 Oct; 47(16):6052-63. PubMed ID: 23969399
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stability studies for titanium dioxide nanoparticles upon adsorption of Suwannee River humic and fulvic acids and natural organic matter.
    Erhayem M; Sohn M
    Sci Total Environ; 2014 Jan; 468-469():249-57. PubMed ID: 24035980
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aggregation and disaggregation of ZnO nanoparticles: influence of pH and adsorption of Suwannee River humic acid.
    Mohd Omar F; Abdul Aziz H; Stoll S
    Sci Total Environ; 2014 Jan; 468-469():195-201. PubMed ID: 24029691
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterisation of Fe-oxide nanoparticles coated with humic acid and Suwannee River natural organic matter.
    Chekli L; Phuntsho S; Roy M; Shon HK
    Sci Total Environ; 2013 Sep; 461-462():19-27. PubMed ID: 23712112
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of humic acid source on humic acid adsorption onto titanium dioxide nanoparticles.
    Erhayem M; Sohn M
    Sci Total Environ; 2014 Feb; 470-471():92-8. PubMed ID: 24140685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. pH-dependent adsorption of α-amino acids, lysine, glutamic acid, serine and glycine, on TiO
    Ustunol IB; Gonzalez-Pech NI; Grassian VH
    J Colloid Interface Sci; 2019 Oct; 554():362-375. PubMed ID: 31306947
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adsorption of organic acids on TiO2 nanoparticles: effects of pH, nanoparticle size, and nanoparticle aggregation.
    Pettibone JM; Cwiertny DM; Scherer M; Grassian VH
    Langmuir; 2008 Jun; 24(13):6659-67. PubMed ID: 18537279
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface speciation of myo-inositol hexakisphosphate adsorbed on TiO2 nanoparticles and its impact on their colloidal stability in aqueous suspension: A comparative study with orthophosphate.
    Wan B; Yan Y; Liu F; Tan W; He J; Feng X
    Sci Total Environ; 2016 Feb; 544():134-42. PubMed ID: 26657256
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Histidine adsorption on TiO2 nanoparticles: an integrated spectroscopic, thermodynamic, and molecular-based approach toward understanding nano-bio interactions.
    Mudunkotuwa IA; Grassian VH
    Langmuir; 2014 Jul; 30(29):8751-60. PubMed ID: 24978817
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-dimensional correlation spectroscopic analysis on the interaction between humic acids and TiO2 nanoparticles.
    Chen W; Qian C; Liu XY; Yu HQ
    Environ Sci Technol; 2014 Oct; 48(19):11119-26. PubMed ID: 25222835
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactions of humic acid with nanosized inorganic oxides.
    Yang K; Lin D; Xing B
    Langmuir; 2009 Apr; 25(6):3571-6. PubMed ID: 19708146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adsorption, aggregation and sedimentation of titanium dioxide nanoparticles and nanotubes in the presence of different sources of humic acids.
    Zhao T; Fang M; Tang Z; Zhao X; Wu F; Giesy JP
    Sci Total Environ; 2019 Nov; 692():660-668. PubMed ID: 31539974
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of Suwannee River humic acid on particle properties and toxicity of silver nanoparticles.
    Gao J; Powers K; Wang Y; Zhou H; Roberts SM; Moudgil BM; Koopman B; Barber DS
    Chemosphere; 2012 Sep; 89(1):96-101. PubMed ID: 22583785
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aggregation of titanium dioxide nanoparticles: role of a fulvic acid.
    Domingos RF; Tufenkji N; Wilkinson KI
    Environ Sci Technol; 2009 Mar; 43(5):1282-6. PubMed ID: 19350891
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards a better understanding on agglomeration mechanisms and thermodynamic properties of TiO₂ nanoparticles interacting with natural organic matter.
    Loosli F; Vitorazi L; Berret JF; Stoll S
    Water Res; 2015 Sep; 80():139-48. PubMed ID: 26001280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Citric acid adsorption on TiO2 nanoparticles in aqueous suspensions at acidic and circumneutral pH: surface coverage, surface speciation, and its impact on nanoparticle-nanoparticle interactions.
    Mudunkotuwa IA; Grassian VH
    J Am Chem Soc; 2010 Oct; 132(42):14986-94. PubMed ID: 20919713
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of organic molecules on the aggregation of TiO
    Danielsson K; Gallego-Urrea JA; Hassellov M; Gustafsson S; Jonsson CM
    J Nanopart Res; 2017; 19(4):133. PubMed ID: 28424566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Humic acid adsorption and surface charge effects on schwertmannite and goethite in acid sulphate waters.
    Kumpulainen S; von der Kammer F; Hofmann T
    Water Res; 2008 Apr; 42(8-9):2051-60. PubMed ID: 18221768
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adsorption of organic matter at mineral/water interfaces. IV. Adsorption of humic substances at boehmite/water interfaces and impact on boehmite dissolution.
    Yoon TH; Johnson SB; Brown GE
    Langmuir; 2005 May; 21(11):5002-12. PubMed ID: 15896043
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.