These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 29384683)

  • 21. Investigation of adsorptive fractionation of humic acid on graphene oxide using fluorescence EEM-PARAFAC.
    Lee BM; Seo YS; Hur J
    Water Res; 2015 Apr; 73():242-51. PubMed ID: 25682051
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effect of humic acid on the aggregation of titanium dioxide nanoparticles under different pH and ionic strengths.
    Zhu M; Wang H; Keller AA; Wang T; Li F
    Sci Total Environ; 2014 Jul; 487():375-80. PubMed ID: 24793841
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Elimination of TiO₂ nanoparticles with the assist of humic acid: influence of agglomeration in the dissolved air flotation process.
    Zhang M; Guiraud P
    J Hazard Mater; 2013 Sep; 260():122-30. PubMed ID: 23747470
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Aggregation and dissolution of 4 nm ZnO nanoparticles in aqueous environments: influence of pH, ionic strength, size, and adsorption of humic acid.
    Bian SW; Mudunkotuwa IA; Rupasinghe T; Grassian VH
    Langmuir; 2011 May; 27(10):6059-68. PubMed ID: 21500814
    [TBL] [Abstract][Full Text] [Related]  

  • 25. ATR-FTIR spectroscopy as a tool to probe surface adsorption on nanoparticles at the liquid-solid interface in environmentally and biologically relevant media.
    Mudunkotuwa IA; Minshid AA; Grassian VH
    Analyst; 2014 Mar; 139(5):870-81. PubMed ID: 24350328
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Surface charge and adsorption from water onto quartz sand of humic acid.
    Jada A; Ait Akbour R; Douch J
    Chemosphere; 2006 Aug; 64(8):1287-95. PubMed ID: 16481022
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bovine Serum Albumin Adsorption on TiO
    Márquez A; Berger T; Feinle A; Hüsing N; Himly M; Duschl A; Diwald O
    Langmuir; 2017 Mar; 33(10):2551-2558. PubMed ID: 28195734
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Distinct effects of humic acid on transport and retention of TiO2 rutile nanoparticles in saturated sand columns.
    Chen G; Liu X; Su C
    Environ Sci Technol; 2012 Jul; 46(13):7142-50. PubMed ID: 22681399
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evaluation of charge and agglomeration behavior of TiO₂ nanoparticles in ecotoxicological media.
    Nur Y; Lead JR; Baalousha M
    Sci Total Environ; 2015 Dec; 535():45-53. PubMed ID: 25432129
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of electrolyte valency, alginate concentration and pH on engineered TiO₂ nanoparticle stability in aqueous solution.
    Loosli F; Le Coustumer P; Stoll S
    Sci Total Environ; 2015 Dec; 535():28-34. PubMed ID: 25726181
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A comparative study on aggregation/sedimentation of TiO2 nanoparticles in mono- and binary systems of fulvic acids and Fe(III).
    Li S; Sun W
    J Hazard Mater; 2011 Dec; 197():70-9. PubMed ID: 22001572
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interactions between natural organic matter and gold nanoparticles stabilized with different organic capping agents.
    Stankus DP; Lohse SE; Hutchison JE; Nason JA
    Environ Sci Technol; 2011 Apr; 45(8):3238-44. PubMed ID: 21162562
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of humic acid on the stability and bacterial toxicity of zinc oxide nanoparticles in water.
    Akhil K; Chandran P; Sudheer Khan S
    J Photochem Photobiol B; 2015 Dec; 153():289-95. PubMed ID: 26496792
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of titanium dioxide nanoparticles on copper toxicity to Daphnia magna in water: Role of organic matter.
    Fan W; Peng R; Li X; Ren J; Liu T; Wang X
    Water Res; 2016 Nov; 105():129-137. PubMed ID: 27611640
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An in-situ DRIFTS study of acetone adsorption mechanism on TiO
    Alalwan H; Alminshid A
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Mar; 229():117990. PubMed ID: 31901804
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of humic acids with different polarities on the photocatalytic activity of nano-TiO
    Wu W; Shan G; Xiang Q; Zhang Y; Yi S; Zhu L
    Water Res; 2017 Oct; 122():78-85. PubMed ID: 28595123
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The energetics of supported metal nanoparticles: relationships to sintering rates and catalytic activity.
    Campbell CT
    Acc Chem Res; 2013 Aug; 46(8):1712-9. PubMed ID: 23607711
    [TBL] [Abstract][Full Text] [Related]  

  • 38. ATR FTIR Study of the Interaction of TiO
    Benbow NL; Rozenberga L; McQuillan AJ; Krasowska M; Beattie DA
    Langmuir; 2021 Nov; 37(45):13278-13290. PubMed ID: 34731567
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Impact of humic acid on the fate and toxicity of titanium dioxide nanoparticles in
    Gupta GS; Kansara K; Shah H; Rathod R; Valecha D; Gogisetty S; Joshi P; Kumar A
    Nanoscale Adv; 2019 Jan; 1(1):219-227. PubMed ID: 36132460
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Adsorption of norfloxacin onto titanium oxide: effect of drug carrier and dissolved humic acid.
    Peng H; Feng S; Zhang X; Li Y; Zhang X
    Sci Total Environ; 2012 Nov; 438():66-71. PubMed ID: 22967494
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.