BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 29385006)

  • 1. Wingate Anaerobic Test Reliability on the Velotron With Ice Hockey Players.
    Bringhurst RF; Wagner DR; Schwartz S
    J Strength Cond Res; 2020 Jun; 34(6):1716-1722. PubMed ID: 29385006
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The development and reliability of a repeated anaerobic cycling test in female ice hockey players.
    Wilson K; Snydmiller G; Game A; Quinney A; Bell G
    J Strength Cond Res; 2010 Feb; 24(2):580-4. PubMed ID: 20072039
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanically braked elliptical Wingate test: modification considerations, load optimization, and reliability.
    Ozkaya O; Colakoglu M; Kuzucu EO; Yildiztepe E
    J Strength Cond Res; 2012 May; 26(5):1313-23. PubMed ID: 21904246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reliability and validity of the velotron racermate cycle ergometer to measure anaerobic power.
    Astorino TA; Cottrell T
    Int J Sports Med; 2012 Mar; 33(3):205-10. PubMed ID: 22187386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of Velotron chainring size on Wingate anaerobic test.
    Clark NW; Wagner DR; Heath EM
    J Sci Med Sport; 2018 Feb; 21(2):202-206. PubMed ID: 28807684
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Division I Hockey Players Generate More Power Than Division III Players During on- and Off-Ice Performance Tests.
    Peterson BJ; Fitzgerald JS; Dietz CC; Ziegler KS; Ingraham SJ; Baker SE; Snyder EM
    J Strength Cond Res; 2015 May; 29(5):1191-6. PubMed ID: 25436625
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Off-Ice Anaerobic Power Does Not Predict On-Ice Repeated Shift Performance in Hockey.
    Peterson BJ; Fitzgerald JS; Dietz CC; Ziegler KS; Baker SE; Snyder EM
    J Strength Cond Res; 2016 Sep; 30(9):2375-81. PubMed ID: 26808844
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of on-ice and off-ice graded exercise testing in collegiate hockey players.
    Durocher JJ; Guisfredi AJ; Leetun DT; Carter JR
    Appl Physiol Nutr Metab; 2010 Feb; 35(1):35-9. PubMed ID: 20130664
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of Anaerobic Fitness in Top-Level Competitive Youth Ice Hockey Players.
    Leiter JR; Cordingley DM; MacDonald PB
    J Strength Cond Res; 2018 Sep; 32(9):2612-2615. PubMed ID: 29239995
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationship Between Physiological Off-Ice Testing, On-Ice Skating, and Game Performance in Division I Female Ice Hockey Players.
    Boland M; Delude K; Miele EM
    J Strength Cond Res; 2019 Jun; 33(6):1619-1628. PubMed ID: 29016475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relationship between body composition, leg strength, anaerobic power, and on-ice skating performance in division I men's hockey athletes.
    Potteiger JA; Smith DL; Maier ML; Foster TS
    J Strength Cond Res; 2010 Jul; 24(7):1755-62. PubMed ID: 20543730
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reliability of Triaxial Accelerometry for Measuring Load in Men's Collegiate Ice Hockey.
    Van Iterson EH; Fitzgerald JS; Dietz CC; Snyder EM; Peterson BJ
    J Strength Cond Res; 2017 May; 31(5):1305-1312. PubMed ID: 27548782
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relationship Between Physiologic Tests, Body Composition Changes, and On-Ice Playing Time in Canadian Collegiate Hockey Players.
    Delisle-Houde P; Chiarlitti NA; Reid RER; Andersen RE
    J Strength Cond Res; 2018 May; 32(5):1297-1302. PubMed ID: 29461416
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Laboratory Determinants of Repeated-Sprint and Sport-Specific-Technique Ability in World-Class Ice Sledge Hockey Players.
    Baumgart JK; Sandbakk Ø
    Int J Sports Physiol Perform; 2016 Mar; 11(2):182-90. PubMed ID: 26182436
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Effect of In-Season Demands on Lower-Body Power and Fatigue in Male Collegiate Hockey Players.
    Whitehead PN; Conners RT; Shimizu TS
    J Strength Cond Res; 2019 Apr; 33(4):1035-1042. PubMed ID: 30908458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-Year Longitudinal Fitness Tracking in Top-Level Competitive Youth Ice Hockey Players.
    Cordingley DM; Sirant L; MacDonald PB; Leiter JR
    J Strength Cond Res; 2019 Nov; 33(11):2909-2912. PubMed ID: 31644516
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reliability and Validity of a New Portable Tethered Sprint Running Test as a Measure of Maximal Anaerobic Performance.
    Limmer M; Berkholz A; de Marées M; Platen P
    J Strength Cond Res; 2020 Aug; 34(8):2197-2204. PubMed ID: 30946262
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationship Between Skating Economy and Performance During a Repeated-Shift Test in Elite and Subelite Ice Hockey Players.
    Lamoureux NR; Tomkinson GR; Peterson BJ; Fitzgerald JS
    J Strength Cond Res; 2018 Apr; 32(4):1109-1113. PubMed ID: 29324580
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Seasonal Changes in Physiological Responses and Body Composition During a Competitive Season in Male and Female Elite Collegiate Ice Hockey Players.
    Delisle-Houde P; Reid RER; Insogna JA; Chiarlitti NA; Andersen RE
    J Strength Cond Res; 2019 Aug; 33(8):2162-2169. PubMed ID: 31344012
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Validity and Reliability of the Lode Excalibur Sport Cycle Ergometer for the Wingate Anaerobic Test.
    Lunn WR; Axtell RS
    J Strength Cond Res; 2021 Oct; 35(10):2894-2901. PubMed ID: 31453946
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.