These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 29385238)
41. Influence of the type of fiber coating and extraction time on foal dry-cured loin volatile compounds extracted by solid-phase microextraction (SPME). Lorenzo JM Meat Sci; 2014 Jan; 96(1):179-86. PubMed ID: 23896153 [TBL] [Abstract][Full Text] [Related]
42. Analysis of the volatile compounds of Teucrium flavum L. subsp. flavum (Lamiaceae) by headspace solid-phase microextraction coupled to gas chromatography with flame ionisation and mass spectrometric detection. Sagratini G; Maggi F; Bílek T; Papa F; Vittori S Nat Prod Res; 2012; 26(14):1339-47. PubMed ID: 22077422 [TBL] [Abstract][Full Text] [Related]
43. Emission pattern of semi-volatile organic compounds from recycled styrenic polymers using headspace solid-phase microextraction gas chromatography-mass spectrometry. Vilaplana F; Martínez-Sanz M; Ribes-Greus A; Karlsson S J Chromatogr A; 2010 Jan; 1217(3):359-67. PubMed ID: 19963220 [TBL] [Abstract][Full Text] [Related]
44. Evaluation of solid-phase micro-extraction coupled to gas chromatography-mass spectrometry for the headspace analysis of volatile compounds in cocoa products. Ducki S; Miralles-Garcia J; Zumbé A; Tornero A; Storey DM Talanta; 2008 Feb; 74(5):1166-74. PubMed ID: 18371766 [TBL] [Abstract][Full Text] [Related]
45. Analysis of volatiles from stored wheat and Rhyzopertha dominica (F.) with solid phase microextraction-gas chromatography mass spectrometry. Niu Y; Hua L; Hardy G; Agarwal M; Ren Y J Sci Food Agric; 2016 Mar; 96(5):1697-703. PubMed ID: 26018460 [TBL] [Abstract][Full Text] [Related]
46. Application of headspace solid-phase microextraction followed by gas chromatography coupled with mass spectrometry to determine esters of carboxylic acids and other volatile compounds in Dermestes maculatus and Dermestes ater lipids. Cerkowniak M; Boguś MI; Włóka E; Stepnowski P; Gołębiowski M Biomed Chromatogr; 2018 Feb; 32(2):. PubMed ID: 28722154 [TBL] [Abstract][Full Text] [Related]
47. A comprehensive characterization of Solanum lycocarpum St. Hill and Solanum oocarpum Sendtn: Chemical composition and antioxidant properties. Pereira APA; Angolini CFF; Paulino BN; Lauretti LBC; Orlando EA; Silva JGS; Neri-Numa IA; Souza JDRP; Pallone JAL; Eberlin MN; Pastore GM Food Res Int; 2019 Oct; 124():61-69. PubMed ID: 31466651 [TBL] [Abstract][Full Text] [Related]
48. Physicochemical Properties and Effects of Fruit Pulps from the Amazon Biome on Physiological Parameters in Rats. Rosan Fortunato Seixas F; Kempfer Bassoli B; Borghi Virgolin L; Chancare Garcia L; Soares Janzantti N Nutrients; 2021 Apr; 13(5):. PubMed ID: 33924791 [TBL] [Abstract][Full Text] [Related]
50. Comparison of techniques for the isolation of volatiles from cashew apple juice. Sampaio KL; Biasoto AC; Da Silva MA J Sci Food Agric; 2015 Jan; 95(2):299-312. PubMed ID: 24789719 [TBL] [Abstract][Full Text] [Related]
51. Analysis of volatile compounds released during the grinding of roasted coffee beans using solid-phase microextraction. Akiyama M; Murakami K; Ohtani N; Iwatsuki K; Sotoyama K; Wada A; Tokuno K; Iwabuchi H; Tanaka K J Agric Food Chem; 2003 Mar; 51(7):1961-9. PubMed ID: 12643659 [TBL] [Abstract][Full Text] [Related]
52. Aroma Profile of Rubus ulmifolius Flowers and Fruits During Different Ontogenetic Phases. Bandeira Reidel RV; Melai B; Cioni P; Flamini G; Pistelli L Chem Biodivers; 2016 Dec; 13(12):1776-1784. PubMed ID: 27449284 [TBL] [Abstract][Full Text] [Related]
53. Effects of thermal processing and pulp filtration on physical, chemical and sensory properties of winter melon juice. Sun X; Baldwin EA; Plotto A; Manthey JA; Duan Y; Bai J J Sci Food Agric; 2017 Jan; 97(2):543-550. PubMed ID: 27099203 [TBL] [Abstract][Full Text] [Related]
54. Volatile composition of pomegranates from 9 Spanish cultivars using headspace solid phase microextraction. Melgarejo P; Calín-Sánchez Á; Vázquez-Araújo L; Hernández F; Martínez JJ; Legua P; Carbonell-Barrachina ÁA J Food Sci; 2011; 76(1):S114-20. PubMed ID: 21535709 [TBL] [Abstract][Full Text] [Related]
55. Optimisation of solid-phase microextraction combined with gas chromatography-mass spectrometry based methodology to establish the global volatile signature in pulp and skin of Vitis vinifera L. grape varieties. Perestrelo R; Barros AS; Rocha SM; Câmara JS Talanta; 2011 Sep; 85(3):1483-93. PubMed ID: 21807213 [TBL] [Abstract][Full Text] [Related]
56. Monitoring the emission of volatile organic compounds from flowers of Jasminum sambac using solid-phase micro-extraction fibers and gas chromatography with mass spectrometry detection. Pragadheesh VS; Yadav A; Chanotiya CS; Rout PK; Uniyal GC Nat Prod Commun; 2011 Sep; 6(9):1333-8. PubMed ID: 21941909 [TBL] [Abstract][Full Text] [Related]
57. Fabrication of novel nanoporous array anodic alumina solid-phase microextraction fiber coating and its potential application for headspace sampling of biological volatile organic compounds. Zhang Z; Wang Q; Li G Anal Chim Acta; 2012 May; 727():13-9. PubMed ID: 22541817 [TBL] [Abstract][Full Text] [Related]
58. Volatile profiles of flavedo, pulp and seeds in Poncirus trifoliata fruits. Papa F; Maggi F; Cianfaglione K; Sagratini G; Caprioli G; Vittori S J Sci Food Agric; 2014 Nov; 94(14):2874-87. PubMed ID: 24578252 [TBL] [Abstract][Full Text] [Related]
59. A comparative study of nutritional composition and potential use of some underutilized tropical fruits of Arecaceae. Silva RB; Silva-Júnior EV; Rodrigues LC; Andrade LH; da Silva SI; Harand W; Oliveira AF An Acad Bras Cienc; 2015 Sep; 87(3):1701-9. PubMed ID: 26221983 [TBL] [Abstract][Full Text] [Related]
60. The evolution of volatile compounds profile of "Toscano" dry-cured ham during ripening as revealed by SPME-GC-MS approach. Pugliese C; Sirtori F; Calamai L; Franci O J Mass Spectrom; 2010 Sep; 45(9):1056-64. PubMed ID: 20799283 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]