BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 2938524)

  • 1. High dose of spinal morphine produce a nonopiate receptor-mediated hyperesthesia: clinical and theoretic implications.
    Yaksh TL; Harty GJ; Onofrio BM
    Anesthesiology; 1986 May; 64(5):590-7. PubMed ID: 2938524
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pharmacology of the allodynia in rats evoked by high dose intrathecal morphine.
    Yaksh TL; Harty GJ
    J Pharmacol Exp Ther; 1988 Feb; 244(2):501-7. PubMed ID: 3346833
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies of the pharmacology and pathology of intrathecally administered 4-anilinopiperidine analogues and morphine in the rat and cat.
    Yaksh TL; Noueihed RY; Durant PA
    Anesthesiology; 1986 Jan; 64(1):54-66. PubMed ID: 2867722
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of spinal amino acid release and touch-evoked allodynia produced by spinal glycine or GABA(A) receptor antagonist.
    Ishikawa T; Marsala M; Sakabe T; Yaksh TL
    Neuroscience; 2000; 95(3):781-6. PubMed ID: 10670445
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spinal delivery of sufentanil, alfentanil, and morphine in dogs. Physiologic and toxicologic investigations.
    Sabbe MB; Grafe MR; Mjanger E; Tiseo PJ; Hill HF; Yaksh TL
    Anesthesiology; 1994 Oct; 81(4):899-920. PubMed ID: 7943841
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intrathecal morphine and clonidine: antinociceptive tolerance and cross-tolerance and effects on blood pressure.
    Solomon RE; Gebhart GF
    J Pharmacol Exp Ther; 1988 May; 245(2):444-54. PubMed ID: 3367301
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of spinal adenosine receptors in modulating the hyperesthesia produced by spinal glycine receptor antagonism.
    Sosnowski M; Yaksh TL
    Anesth Analg; 1989 Nov; 69(5):587-92. PubMed ID: 2552866
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hypoglycemia induced by intrathecal opioids in mice: stereospecificity, drug specificity and effect of fasting.
    Brase DA; Singha AK; Estrada U; Lux F; Dewey WL
    J Pharmacol Exp Ther; 1990 Jun; 253(3):899-904. PubMed ID: 2359029
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparable dose-dependent inhibition of AP-7 sensitive strychnine-induced allodynia and paw pinch-induced nociception by mexiletine in the rat.
    Khandwala H; Hodge E; Loomis CW
    Pain; 1997 Sep; 72(3):299-308. PubMed ID: 9313270
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential cross-tolerance between intrathecal morphine and sufentanil in the rat.
    Sosnowski M; Yaksh TL
    Anesthesiology; 1990 Dec; 73(6):1141-7. PubMed ID: 1978988
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studies on the mechanism of hypoglycemia induced by intrathecal morphine: dissociation from behavioral effects, effects of tolerance and depletion of liver glycogen.
    Lux F; Han YH; Brase DA; Dewey WL
    J Pharmacol Exp Ther; 1989 Jun; 249(3):688-93. PubMed ID: 2732944
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of irreversible antagonists to determine the relative efficacy of mu-opioids in a pigeon drug discrimination procedure: comparison of beta-funaltrexamine and clocinnamox.
    Barrett AC; Smith ES; Picker MJ
    J Pharmacol Exp Ther; 2003 Jun; 305(3):1061-70. PubMed ID: 12649297
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antinociception and cardiovascular responses produced by intravenous morphine: the role of vagal afferents.
    Randich A; Thurston CL; Ludwig PS; Timmerman MR; Gebhart GF
    Brain Res; 1991 Mar; 543(2):256-70. PubMed ID: 2059834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Behavioral and autonomic correlates of the tactile evoked allodynia produced by spinal glycine inhibition: effects of modulatory receptor systems and excitatory amino acid antagonists.
    Yaksh TL
    Pain; 1989 Apr; 37(1):111-123. PubMed ID: 2542867
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gastrointestinal transit following intrathecal or subcutaneous narcotic analgesics.
    Dhasmana KM; Banerjee AK; Erdmann W
    Arch Int Pharmacodyn Ther; 1987 Mar; 286(1):152-61. PubMed ID: 2884939
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time-dependent effect of morphine and time-independent effect of MK-801, an NMDA antagonist, on the thermal hyperesthesia induced by unilateral constriction injury to the sciatic nerve in the rat.
    Yamamoto T; Shimoyama N; Asano H; Mizuguchi T
    Anesthesiology; 1994 Jun; 80(6):1311-9. PubMed ID: 8010478
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sufentanil, morphine, met-enkephalin, and kappa-agonist (U-50,488H) inhibit substance P release from primary sensory neurons: a model for presynaptic spinal opioid actions.
    Chang HM; Berde CB; Holz GG; Steward GF; Kream RM
    Anesthesiology; 1989 Apr; 70(4):672-7. PubMed ID: 2467589
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential behavioral effects induced by intrathecal microinjection of opiates: comparison of convulsive and cataleptic effects produced by morphine, methadone, and D-Ala2-methionine-enkephalinamide.
    Frenk H; Watkins LR; Mayer DJ
    Brain Res; 1984 May; 299(1):31-42. PubMed ID: 6326963
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The development of morphine tolerance and dependence in rats with chronic pain.
    Yu W; Hao JX; Xu XJ; Wiesenfeld-Hallin Z
    Brain Res; 1997 May; 756(1-2):141-6. PubMed ID: 9187324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Separate neural mechanisms mediate sufentanil-induced pupillary responses in the cat.
    Sharpe LG
    J Pharmacol Exp Ther; 1991 Mar; 256(3):845-9. PubMed ID: 1672378
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.