These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 29385722)

  • 41. Impact of a DANA Event on the Thermal Response of Nectarine Trees.
    Conesa MR; Conejero W; Vera J; Mira-García AB; Ruiz-Sánchez MC
    Plants (Basel); 2023 Feb; 12(4):. PubMed ID: 36840255
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Modeling Aboveground Biomass in Hulunber Grassland Ecosystem by Using Unmanned Aerial Vehicle Discrete Lidar.
    Wang D; Xin X; Shao Q; Brolly M; Zhu Z; Chen J
    Sensors (Basel); 2017 Jan; 17(1):. PubMed ID: 28106819
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Development of an Open-Source Thermal Image Processing Software for Improving Irrigation Management in Potato Crops (
    Cucho-Padin G; Rinza J; Ninanya J; Loayza H; Quiroz R; Ramírez DA
    Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31947632
    [TBL] [Abstract][Full Text] [Related]  

  • 44. MECS-VINE
    Gatti M; Dosso P; Maurino M; Merli MC; Bernizzoni F; José Pirez F; Platè B; Bertuzzi GC; Poni S
    Sensors (Basel); 2016 Nov; 16(12):. PubMed ID: 27898049
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Integrative field scale phenotyping for investigating metabolic components of water stress within a vineyard.
    Gago J; Fernie AR; Nikoloski Z; Tohge T; Martorell S; Escalona JM; Ribas-Carbó M; Flexas J; Medrano H
    Plant Methods; 2017; 13():90. PubMed ID: 29093742
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Automatic UAV-based detection of Cynodon dactylon for site-specific vineyard management.
    Jiménez-Brenes FM; López-Granados F; Torres-Sánchez J; Peña JM; Ramírez P; Castillejo-González IL; de Castro AI
    PLoS One; 2019; 14(6):e0218132. PubMed ID: 31185068
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Use of thermal imaging to determine leaf conductance along a canopy gradient in European beech (Fagus sylvatica).
    Reinert S; Bögelein R; Thomas FM
    Tree Physiol; 2012 Mar; 32(3):294-302. PubMed ID: 22427372
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Determination of Wheat Heading Stage Using Convolutional Neural Networks on Multispectral UAV Imaging Data.
    Li Y; Cao G; Liu D; Zhang J; Li L; Chen C
    Comput Intell Neurosci; 2022; 2022():3655804. PubMed ID: 36465952
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Evaluation of TSEB turbulent fluxes using different methods for the retrieval of soil and canopy component temperatures from UAV thermal and multispectral imagery.
    Nieto H; Kustas WP; Torres-Rúa A; Alfieri JG; Gao F; Anderson MC; White WA; Song L; Del Mar Alsina M; Prueger JH; McKee M; Elarab M; McKee LG
    Irrig Sci; 2019; 37(3):389-406. PubMed ID: 32355404
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Estimation of soil salt content by combining UAV-borne multispectral sensor and machine learning algorithms.
    Wei G; Li Y; Zhang Z; Chen Y; Chen J; Yao Z; Lao C; Chen H
    PeerJ; 2020; 8():e9087. PubMed ID: 32377459
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Assessing Spatial Variability of Grape Skin Flavonoids at the Vineyard Scale Based on Plant Water Status Mapping.
    Brillante L; Martínez-Luscher J; Yu R; Plank CM; Sanchez L; Bates TL; Brenneman C; Oberholster A; Kurtural SK
    J Agric Food Chem; 2017 Jul; 65(26):5255-5265. PubMed ID: 28602091
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Estimation of evapotranspiration of temperate grassland based on high-resolution thermal and visible range imagery from unmanned aerial systems.
    Brenner C; Zeeman M; Bernhardt M; Schulz K
    Int J Remote Sens; 2018; 39(15-16):5141-5174. PubMed ID: 30246176
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Decision Support System for Variable Rate Irrigation Based on UAV Multispectral Remote Sensing.
    Shi X; Han W; Zhao T; Tang J
    Sensors (Basel); 2019 Jun; 19(13):. PubMed ID: 31261734
    [TBL] [Abstract][Full Text] [Related]  

  • 54. An Analysis of the Influence of Flight Parameters in the Generation of Unmanned Aerial Vehicle (UAV) Orthomosaicks to Survey Archaeological Areas.
    Mesas-Carrascosa FJ; Notario García MD; Meroño de Larriva JE; García-Ferrer A
    Sensors (Basel); 2016 Nov; 16(11):. PubMed ID: 27809293
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Identifying the Branch of Kiwifruit Based on Unmanned Aerial Vehicle (UAV) Images Using Deep Learning Method.
    Niu Z; Deng J; Zhang X; Zhang J; Pan S; Mu H
    Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34209571
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Integrating Geophysical and Multispectral Data to Delineate Homogeneous Management Zones within a Vineyard in Northern Italy.
    Ortuani B; Sona G; Ronchetti G; Mayer A; Facchi A
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31540098
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Combining thermal and visible imagery for estimating canopy temperature and identifying plant stress.
    Leinonen I; Jones HG
    J Exp Bot; 2004 Jun; 55(401):1423-31. PubMed ID: 15133055
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Comparing RIEGL RiCOPTER UAV LiDAR Derived Canopy Height and DBH with Terrestrial LiDAR.
    Brede B; Lau A; Bartholomeus HM; Kooistra L
    Sensors (Basel); 2017 Oct; 17(10):. PubMed ID: 29039755
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A Low-Cost and Unsupervised Image Recognition Methodology for Yield Estimation in a Vineyard.
    Di Gennaro SF; Toscano P; Cinat P; Berton A; Matese A
    Front Plant Sci; 2019; 10():559. PubMed ID: 31130974
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Automatic instance segmentation of orchard canopy in unmanned aerial vehicle imagery using deep learning.
    Zhang W; Chen X; Qi J; Yang S
    Front Plant Sci; 2022; 13():1041791. PubMed ID: 36531373
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.