These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
234 related articles for article (PubMed ID: 29385759)
61. Surface Chemical Tuning of Phonon and Electron Transport in Free-Standing Silicon Nanowire Arrays. Pan Y; Tao Y; Qin G; Fedoryshyn Y; Raja SN; Hu M; Degen CL; Poulikakos D Nano Lett; 2016 Oct; 16(10):6364-6370. PubMed ID: 27580070 [TBL] [Abstract][Full Text] [Related]
62. On-Chip Thermoelectric Devices Based on Standard Silicon Processing. Dimaggio E; Masci A; De Seta A; Salleras M; Fonseca L; Pennelli G Small; 2024 Sep; ():e2405411. PubMed ID: 39324553 [TBL] [Abstract][Full Text] [Related]
63. A deep etching mechanism for trench-bridging silicon nanowires. Tasdemir Z; Wollschläger N; Österle W; Leblebici Y; Alaca BE Nanotechnology; 2016 Mar; 27(9):095303. PubMed ID: 26854570 [TBL] [Abstract][Full Text] [Related]
64. Holey silicon as an efficient thermoelectric material. Tang J; Wang HT; Lee DH; Fardy M; Huo Z; Russell TP; Yang P Nano Lett; 2010 Oct; 10(10):4279-83. PubMed ID: 20839780 [TBL] [Abstract][Full Text] [Related]
65. Large area fabrication of vertical silicon nanowire arrays by silver-assisted single-step chemical etching and their formation kinetics. Srivastava SK; Kumar D; Schmitt SW; Sood KN; Christiansen SH; Singh PK Nanotechnology; 2014 May; 25(17):175601. PubMed ID: 24717841 [TBL] [Abstract][Full Text] [Related]
66. Using crystallographic shear to reduce lattice thermal conductivity: high temperature thermoelectric characterization of the spark plasma sintered Magnéli phases WO2.90 and WO2.722. Kieslich G; Veremchuk I; Antonyshyn I; Zeier WG; Birkel CS; Weldert K; Heinrich CP; Visnow E; Panthöfer M; Burkhardt U; Grin Y; Tremel W Phys Chem Chem Phys; 2013 Oct; 15(37):15399-403. PubMed ID: 23936907 [TBL] [Abstract][Full Text] [Related]
67. On the Many Applications of Nanometer-Thin Pure Boron Layers in IC and Microelectromechanical Systems Technology. Nanver LK; Knezevic T; Liu X; Thammaiah SD; Krakers M J Nanosci Nanotechnol; 2021 Apr; 21(4):2472-2482. PubMed ID: 33500065 [TBL] [Abstract][Full Text] [Related]
68. Influence of Fabrication Processes and Annealing Treatment on the Minority Carrier Lifetime of Silicon Nanowire Films. Kato S; Yamazaki T; Kurokawa Y; Miyajima S; Konagai M Nanoscale Res Lett; 2017 Dec; 12(1):242. PubMed ID: 28363239 [TBL] [Abstract][Full Text] [Related]
69. Influence of inhomogeneous porosity on silicon nanowire Raman enhancement and leaky mode modulated photoluminescence. Ratchford D; Yeom J; Long JP; Pehrsson PE Nanoscale; 2015 Mar; 7(9):4124-33. PubMed ID: 25666765 [TBL] [Abstract][Full Text] [Related]
72. Silicon oxide nanowires: facile and controlled large area fabrication of vertically oriented silicon oxide nanowires for photoluminescence and sensor applications. Alabi TR; Yuan D; Bucknall D; Das S ACS Appl Mater Interfaces; 2013 Sep; 5(18):8932-8. PubMed ID: 23915216 [TBL] [Abstract][Full Text] [Related]
73. Bulk and surface structure and high-temperature thermoelectric properties of inverse clathrate-III in the Si-P-Te system. Zaikina JV; Mori T; Kovnir K; Teschner D; Senyshyn A; Schwarz U; Grin Y; Shevelkov AV Chemistry; 2010 Nov; 16(42):12582-9. PubMed ID: 20945448 [TBL] [Abstract][Full Text] [Related]