These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 29385796)

  • 1. Influence of Solvent on the Drug-Loading Process of Amphiphilic Nanogel Star Polymers.
    Carr AC; Piunova VA; Maarof H; Rice JE; Swope WC
    J Phys Chem B; 2018 May; 122(21):5356-5367. PubMed ID: 29385796
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanogel star polymer architectures: a nanoparticle platform for modular programmable macromolecular self-assembly, intercellular transport, and dual-mode cargo delivery.
    Lee VY; Havenstrite K; Tjio M; McNeil M; Blau HM; Miller RD; Sly J
    Adv Mater; 2011 Oct; 23(39):4509-15. PubMed ID: 21901765
    [No Abstract]   [Full Text] [Related]  

  • 3. Interconnected roles of scaffold hydrophobicity, drug loading, and encapsulation stability in polymeric nanocarriers.
    Bickerton S; Jiwpanich S; Thayumanavan S
    Mol Pharm; 2012 Dec; 9(12):3569-78. PubMed ID: 23088589
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual stimuli-responsive polymeric hollow nanogels designed as carriers for intracellular triggered drug release.
    Chiang WH; Ho VT; Huang WC; Huang YF; Chern CS; Chiu HC
    Langmuir; 2012 Oct; 28(42):15056-64. PubMed ID: 23036055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanogels as pharmaceutical carriers: finite networks of infinite capabilities.
    Kabanov AV; Vinogradov SV
    Angew Chem Int Ed Engl; 2009; 48(30):5418-29. PubMed ID: 19562807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of Dialysis- and Solvatofluorochromism-Based Methods to Determine Drug Release Rates from Polymer Nanoassemblies.
    Reichel D; Bae Y
    Pharm Res; 2017 Feb; 34(2):394-407. PubMed ID: 27873146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toward biodegradable nanogel star polymers via organocatalytic ROP.
    Appel EA; Lee VY; Nguyen TT; McNeil M; Nederberg F; Hedrick JL; Swope WC; Rice JE; Miller RD; Sly J
    Chem Commun (Camb); 2012 Jun; 48(49):6163-5. PubMed ID: 22590707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Affinity-mediated capture and release of amphiphilic copolymers for controlling antimicrobial activity.
    Takahashi H; Akiyoshi K; Kuroda K
    Chem Commun (Camb); 2015 Aug; 51(63):12597-600. PubMed ID: 26154063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanogel--an advanced drug delivery tool: Current and future.
    Sharma A; Garg T; Aman A; Panchal K; Sharma R; Kumar S; Markandeywar T
    Artif Cells Nanomed Biotechnol; 2016; 44(1):165-77. PubMed ID: 25053442
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparative study on the effects of amphiphilic and hydrophilic polymers on the release profiles of a poorly water-soluble drug.
    Irwan AW; Berania JE; Liu X
    Pharm Dev Technol; 2016 Mar; 21(2):231-8. PubMed ID: 25496001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional, star polymeric molecular carriers, built from biodegradable microgel/nanogel cores.
    Syrett JA; Haddleton DM; Whittaker MR; Davis TP; Boyer C
    Chem Commun (Camb); 2011 Feb; 47(5):1449-51. PubMed ID: 21180748
    [TBL] [Abstract][Full Text] [Related]  

  • 12. pH responsive biodegradable nanogels for sustained release of bleomycin.
    Sahu P; Kashaw SK; Kushwah V; Sau S; Jain S; Iyer AK
    Bioorg Med Chem; 2017 Sep; 25(17):4595-4613. PubMed ID: 28734664
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiresponsive Nanogels for Targeted Anticancer Drug Delivery.
    Zhang Q; Colazo J; Berg D; Mugo SM; Serpe MJ
    Mol Pharm; 2017 Aug; 14(8):2624-2628. PubMed ID: 28686454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Hydrophobic Core Topology and Composition on the Structure and Kinetics of Star Polymers: A Molecular Dynamics Study.
    Carr AC; Felberg LE; Piunova VA; Rice JE; Head-Gordon T; Swope WC
    J Phys Chem B; 2017 Apr; 121(13):2902-2918. PubMed ID: 28290691
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Near-infrared light remote-controlled intracellular anti-cancer drug delivery using thermo/pH sensitive nanovehicle.
    Qin Y; Chen J; Bi Y; Xu X; Zhou H; Gao J; Hu Y; Zhao Y; Chai Z
    Acta Biomater; 2015 Apr; 17():201-9. PubMed ID: 25644449
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New progress and prospects: The application of nanogel in drug delivery.
    Zhang H; Zhai Y; Wang J; Zhai G
    Mater Sci Eng C Mater Biol Appl; 2016 Mar; 60():560-568. PubMed ID: 26706564
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dimeric drug polymeric nanoparticles with exceptionally high drug loading and quantitative loading efficiency.
    Cai K; He X; Song Z; Yin Q; Zhang Y; Uckun FM; Jiang C; Cheng J
    J Am Chem Soc; 2015 Mar; 137(10):3458-61. PubMed ID: 25741752
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stimulus responsive nanogel with innate near IR fluorescent capability for drug delivery and bioimaging.
    Vijayan VM; Shenoy SJ; Victor SP; Muthu J
    Colloids Surf B Biointerfaces; 2016 Oct; 146():84-96. PubMed ID: 27262258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A magnetic nanogel based on O-carboxymethylchitosan for antitumor drug delivery: synthesis, characterization and in vitro drug release.
    Demarchi CA; Debrassi A; Buzzi Fde C; Corrêa R; Filho VC; Rodrigues CA; Nedelko N; Demchenko P; Ślawska-Waniewska A; Dłużewski P; Greneche JM
    Soft Matter; 2014 May; 10(19):3441-50. PubMed ID: 24647530
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Evaluation of in vitro insulin release from nanoparticles assembled by polyethylene glycol, polycaprolactone and polyethyleneimine].
    Wang Y; Li W; Shen M; Chen Q; Zeng Q
    Nan Fang Yi Ke Da Xue Xue Bao; 2016 Jan; 36(1):109-15. PubMed ID: 26806749
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.