BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 29386017)

  • 1. A review of influenza detection and prediction through social networking sites.
    Alessa A; Faezipour M
    Theor Biol Med Model; 2018 Feb; 15(1):2. PubMed ID: 29386017
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using Google Flu Trends data in forecasting influenza-like-illness related ED visits in Omaha, Nebraska.
    Araz OM; Bentley D; Muelleman RL
    Am J Emerg Med; 2014 Sep; 32(9):1016-23. PubMed ID: 25037278
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using web search queries to monitor influenza-like illness: an exploratory retrospective analysis, Netherlands, 2017/18 influenza season.
    Schneider PP; van Gool CJ; Spreeuwenberg P; Hooiveld M; Donker GA; Barnett DJ; Paget J
    Euro Surveill; 2020 May; 25(21):. PubMed ID: 32489174
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long Short-term Memory-Based Prediction of the Spread of Influenza-Like Illness Leveraging Surveillance, Weather, and Twitter Data: Model Development and Validation.
    Athanasiou M; Fragkozidis G; Zarkogianni K; Nikita KS
    J Med Internet Res; 2023 Feb; 25():e42519. PubMed ID: 36745490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Using Google Trends to estimate the incidence of influenza-like illness in Argentina].
    Orellano PW; Reynoso JI; Antman J; Argibay O
    Cad Saude Publica; 2015 Apr; 31(4):691-700. PubMed ID: 25945979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling the impact of twitter on influenza epidemics.
    Pawelek KA; Oeldorf-Hirsch A; Rong L
    Math Biosci Eng; 2014 Dec; 11(6):1337-56. PubMed ID: 25365604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of hangeul twitter to track and predict human influenza infection.
    Kim EK; Seok JH; Oh JS; Lee HW; Kim KH
    PLoS One; 2013; 8(7):e69305. PubMed ID: 23894447
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Subregional Nowcasts of Seasonal Influenza Using Search Trends.
    Kandula S; Hsu D; Shaman J
    J Med Internet Res; 2017 Nov; 19(11):e370. PubMed ID: 29109069
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flu Outbreak Prediction Using Twitter Posts Classification and Linear Regression With Historical Centers for Disease Control and Prevention Reports: Prediction Framework Study.
    Alessa A; Faezipour M
    JMIR Public Health Surveill; 2019 Jun; 5(2):e12383. PubMed ID: 31237567
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimating Influenza Outbreaks Using Both Search Engine Query Data and Social Media Data in South Korea.
    Woo H; Cho Y; Shim E; Lee JK; Lee CG; Kim SH
    J Med Internet Res; 2016 Jul; 18(7):e177. PubMed ID: 27377323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing Seasonal Influenza Surveillance: Topic Analysis of Widely Used Medicinal Drugs Using Twitter Data.
    Kagashe I; Yan Z; Suheryani I
    J Med Internet Res; 2017 Sep; 19(9):e315. PubMed ID: 28899847
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A case study of the New York City 2012-2013 influenza season with daily geocoded Twitter data from temporal and spatiotemporal perspectives.
    Nagar R; Yuan Q; Freifeld CC; Santillana M; Nojima A; Chunara R; Brownstein JS
    J Med Internet Res; 2014 Oct; 16(10):e236. PubMed ID: 25331122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using Web and social media for influenza surveillance.
    Corley CD; Cook DJ; Mikler AR; Singh KP
    Adv Exp Med Biol; 2010; 680():559-64. PubMed ID: 20865540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monitoring influenza activity in the United States: a comparison of traditional surveillance systems with Google Flu Trends.
    Ortiz JR; Zhou H; Shay DK; Neuzil KM; Fowlkes AL; Goss CH
    PLoS One; 2011 Apr; 6(4):e18687. PubMed ID: 21556151
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimal multi-source forecasting of seasonal influenza.
    Ertem Z; Raymond D; Meyers LA
    PLoS Comput Biol; 2018 Sep; 14(9):e1006236. PubMed ID: 30180212
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Forecasting influenza-like illness dynamics for military populations using neural networks and social media.
    Volkova S; Ayton E; Porterfield K; Corley CD
    PLoS One; 2017; 12(12):e0188941. PubMed ID: 29244814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unsupervised extraction of epidemic syndromes from participatory influenza surveillance self-reported symptoms.
    Kalimeri K; Delfino M; Cattuto C; Perrotta D; Colizza V; Guerrisi C; Turbelin C; Duggan J; Edmunds J; Obi C; Pebody R; Franco AO; Moreno Y; Meloni S; Koppeschaar C; Kjelsø C; Mexia R; Paolotti D
    PLoS Comput Biol; 2019 Apr; 15(4):e1006173. PubMed ID: 30958817
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of daily Internet search query data improves real-time projections of influenza epidemics.
    Zimmer C; Leuba SI; Yaesoubi R; Cohen T
    J R Soc Interface; 2018 Oct; 15(147):. PubMed ID: 30305417
    [TBL] [Abstract][Full Text] [Related]  

  • 19. What can digital disease detection learn from (an external revision to) Google Flu Trends?
    Santillana M; Zhang DW; Althouse BM; Ayers JW
    Am J Prev Med; 2014 Sep; 47(3):341-7. PubMed ID: 24997572
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of the sentinel surveillance system for influenza-like illnesses in the Greater Accra region, Ghana, 2018.
    Nuvey FS; Edu-Quansah EP; Kuma GK; Eleeza J; Kenu E; Sackey S; Ameme D; Abakar MF; Kreppel K; Ngandolo RB; Afari E; Bonfoh B
    PLoS One; 2019; 14(3):e0213627. PubMed ID: 30870489
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.