BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 29386108)

  • 21. The structure of the human ERCC1/XPF interaction domains reveals a complementary role for the two proteins in nucleotide excision repair.
    Tripsianes K; Folkers G; Ab E; Das D; Odijk H; Jaspers NG; Hoeijmakers JH; Kaptein R; Boelens R
    Structure; 2005 Dec; 13(12):1849-58. PubMed ID: 16338413
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Replication-Coupled DNA Repair.
    Cortez D
    Mol Cell; 2019 Jun; 74(5):866-876. PubMed ID: 31173722
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The inefficiency of incisions of ecteinascidin 743-DNA adducts by the UvrABC nuclease and the unique structural feature of the DNA adducts can be used to explain the repair-dependent toxicities of this antitumor agent.
    Zewail-Foote M; Li VS; Kohn H; Bearss D; Guzman M; Hurley LH
    Chem Biol; 2001 Nov; 8(11):1033-49. PubMed ID: 11731295
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Z-DNA-forming sequences generate large-scale deletions in mammalian cells.
    Wang G; Christensen LA; Vasquez KM
    Proc Natl Acad Sci U S A; 2006 Feb; 103(8):2677-82. PubMed ID: 16473937
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Replication Through Repetitive DNA Elements and Their Role in Human Diseases.
    Madireddy A; Gerhardt J
    Adv Exp Med Biol; 2017; 1042():549-581. PubMed ID: 29357073
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phosphate steering by Flap Endonuclease 1 promotes 5'-flap specificity and incision to prevent genome instability.
    Tsutakawa SE; Thompson MJ; Arvai AS; Neil AJ; Shaw SJ; Algasaier SI; Kim JC; Finger LD; Jardine E; Gotham VJB; Sarker AH; Her MZ; Rashid F; Hamdan SM; Mirkin SM; Grasby JA; Tainer JA
    Nat Commun; 2017 Jun; 8():15855. PubMed ID: 28653660
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cytosine deamination and base excision repair cause R-loop-induced CAG repeat fragility and instability in
    Su XA; Freudenreich CH
    Proc Natl Acad Sci U S A; 2017 Oct; 114(40):E8392-E8401. PubMed ID: 28923949
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nucleotide excision repair endonuclease genes in Drosophila melanogaster.
    Sekelsky JJ; Hollis KJ; Eimerl AI; Burtis KC; Hawley RS
    Mutat Res; 2000 Apr; 459(3):219-28. PubMed ID: 10812334
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A postincision-deficient TFIIH causes replication fork breakage and uncovers alternative Rad51- or Pol32-mediated restart mechanisms.
    Moriel-Carretero M; Aguilera A
    Mol Cell; 2010 Mar; 37(5):690-701. PubMed ID: 20227372
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The yin and yang of repair mechanisms in DNA structure-induced genetic instability.
    Vasquez KM; Wang G
    Mutat Res; 2013; 743-744():118-131. PubMed ID: 23219604
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tissue-specific impact of stem-loops and quadruplexes on cancer breakpoints formation.
    Cheloshkina K; Poptsova M
    BMC Cancer; 2019 May; 19(1):434. PubMed ID: 31077166
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Global analysis of genomic instability caused by DNA replication stress in Saccharomyces cerevisiae.
    Zheng DQ; Zhang K; Wu XC; Mieczkowski PA; Petes TD
    Proc Natl Acad Sci U S A; 2016 Dec; 113(50):E8114-E8121. PubMed ID: 27911848
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanism of open complex and dual incision formation by human nucleotide excision repair factors.
    Evans E; Moggs JG; Hwang JR; Egly JM; Wood RD
    EMBO J; 1997 Nov; 16(21):6559-73. PubMed ID: 9351836
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mapping of interaction domains between human repair proteins ERCC1 and XPF.
    de Laat WL; Sijbers AM; Odijk H; Jaspers NG; Hoeijmakers JH
    Nucleic Acids Res; 1998 Sep; 26(18):4146-52. PubMed ID: 9722633
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Models for chromosomal replication-independent non-B DNA structure-induced genetic instability.
    Wang G; Vasquez KM
    Mol Carcinog; 2009 Apr; 48(4):286-98. PubMed ID: 19123200
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Does interference between replication and transcription contribute to genomic instability in cancer cells?
    Tuduri S; Crabbe L; Tourrière H; Coquelle A; Pasero P
    Cell Cycle; 2010 May; 9(10):1886-92. PubMed ID: 20495385
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Repeat instability during DNA repair: Insights from model systems.
    Usdin K; House NC; Freudenreich CH
    Crit Rev Biochem Mol Biol; 2015; 50(2):142-67. PubMed ID: 25608779
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Detection of cis- and trans-acting Factors in DNA Structure-Induced Genetic Instability Using In silico and Cellular Approaches.
    Wang G; Zhao J; Vasquez KM
    Front Genet; 2016; 7():135. PubMed ID: 27532010
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Missed cleavage opportunities by FEN1 lead to Okazaki fragment maturation via the long-flap pathway.
    Zaher MS; Rashid F; Song B; Joudeh LI; Sobhy MA; Tehseen M; Hingorani MM; Hamdan SM
    Nucleic Acids Res; 2018 Apr; 46(6):2956-2974. PubMed ID: 29420814
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Advances in mechanisms of genetic instability related to hereditary neurological diseases.
    Wells RD; Dere R; Hebert ML; Napierala M; Son LS
    Nucleic Acids Res; 2005; 33(12):3785-98. PubMed ID: 16006624
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.