These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
283 related articles for article (PubMed ID: 29386352)
21. Translation initiation factor eIF3 promotes programmed stop codon readthrough. Beznosková P; Wagner S; Jansen ME; von der Haar T; Valášek LS Nucleic Acids Res; 2015 May; 43(10):5099-111. PubMed ID: 25925566 [TBL] [Abstract][Full Text] [Related]
22. Translational readthrough potential of natural termination codons in eucaryotes--The impact of RNA sequence. Dabrowski M; Bukowy-Bieryllo Z; Zietkiewicz E RNA Biol; 2015; 12(9):950-8. PubMed ID: 26176195 [TBL] [Abstract][Full Text] [Related]
23. Eukaryotic release factor 1 (eRF1) abolishes readthrough and competes with suppressor tRNAs at all three termination codons in messenger RNA. Drugeon G; Jean-Jean O; Frolova L; Le Goff X; Philippe M; Kisselev L; Haenni AL Nucleic Acids Res; 1997 Jun; 25(12):2254-8. PubMed ID: 9171074 [TBL] [Abstract][Full Text] [Related]
24. Genome-wide prediction of stop codon readthrough during translation in the yeast Saccharomyces cerevisiae. Williams I; Richardson J; Starkey A; Stansfield I Nucleic Acids Res; 2004; 32(22):6605-16. PubMed ID: 15602002 [TBL] [Abstract][Full Text] [Related]
25. Mammalian proteome expansion by stop codon readthrough. Manjunath LE; Singh A; Som S; Eswarappa SM Wiley Interdiscip Rev RNA; 2023 Mar; 14(2):e1739. PubMed ID: 35570338 [TBL] [Abstract][Full Text] [Related]
26. Interrogation of Eukaryotic Stop Codon Readthrough Signals by in Vitro RNA Selection. Anzalone AV; Zairis S; Lin AJ; Rabadan R; Cornish VW Biochemistry; 2019 Feb; 58(8):1167-1178. PubMed ID: 30698415 [TBL] [Abstract][Full Text] [Related]
27. Extended stop codon context predicts nonsense codon readthrough efficiency in human cells. Mangkalaphiban K; Fu L; Du M; Thrasher K; Keeling KM; Bedwell DM; Jacobson A Nat Commun; 2024 Mar; 15(1):2486. PubMed ID: 38509072 [TBL] [Abstract][Full Text] [Related]
28. 9-cis retinoic acid accelerates calcitriol-induced osteocalcin production and promotes degradation of both vitamin D receptor and retinoid X receptor in human osteoblastic cells. Jääskeläinen T; Ryhänen S; Mäenpää PH J Cell Biochem; 2003 Aug; 89(6):1164-76. PubMed ID: 12898515 [TBL] [Abstract][Full Text] [Related]
29. New understanding of the molecular mechanism of receptor-mediated genomic actions of the vitamin D hormone. Haussler MR; Jurutka PW; Hsieh JC; Thompson PD; Selznick SH; Haussler CA; Whitfield GK Bone; 1995 Aug; 17(2 Suppl):33S-38S. PubMed ID: 8579895 [TBL] [Abstract][Full Text] [Related]
30. Identification and functional characterization of mRNAs that exhibit stop codon readthrough in Arabidopsis thaliana. Sahoo S; Singh D; Singh A; Pandit M; Vasu K; Som S; Pullagurla NJ; Laha D; Eswarappa SM J Biol Chem; 2022 Aug; 298(8):102173. PubMed ID: 35752360 [TBL] [Abstract][Full Text] [Related]
31. Hairless modulates ligand-dependent activation of the vitamin D receptor-retinoid X receptor heterodimer. Chuma M; Endo-Umeda K; Shimba S; Yamada S; Makishima M Biol Pharm Bull; 2012; 35(4):582-7. PubMed ID: 22466564 [TBL] [Abstract][Full Text] [Related]
32. c-Jun NH2-teminal kinase 1 interacts with vitamin D receptor and affects vitamin D-mediated inhibition of cancer cell proliferation. Bi X; Shi Q; Zhang H; Bao Y; Hu D; Pohl N; Fang W; Dong H; Xia X; Fan D; Yang W J Steroid Biochem Mol Biol; 2016 Oct; 163():164-72. PubMed ID: 27174721 [TBL] [Abstract][Full Text] [Related]
33. Mechanisms of the regulation of EGF receptor gene expression by calcitriol and parathyroid hormone in UMR 106-01 cells. González EA; Disthabanchong S; Kowalewski R; Martin KJ Kidney Int; 2002 May; 61(5):1627-34. PubMed ID: 11967012 [TBL] [Abstract][Full Text] [Related]
34. The functional readthrough extension of malate dehydrogenase reveals a modification of the genetic code. Hofhuis J; Schueren F; Nötzel C; Lingner T; Gärtner J; Jahn O; Thoms S Open Biol; 2016 Nov; 6(11):. PubMed ID: 27881739 [TBL] [Abstract][Full Text] [Related]
35. Transcript-specific induction of stop codon readthrough using a CRISPR-dCas13 system. Manjunath LE; Singh A; Devi Kumar S; Vasu K; Kar D; Sellamuthu K; Eswarappa SM EMBO Rep; 2024 Apr; 25(4):2118-2143. PubMed ID: 38499809 [TBL] [Abstract][Full Text] [Related]
36. Vitamin D receptor activation down-regulates the small heterodimer partner and increases CYP7A1 to lower cholesterol. Chow EC; Magomedova L; Quach HP; Patel R; Durk MR; Fan J; Maeng HJ; Irondi K; Anakk S; Moore DD; Cummins CL; Pang KS Gastroenterology; 2014 Apr; 146(4):1048-59. PubMed ID: 24365583 [TBL] [Abstract][Full Text] [Related]
37. The signal for translational readthrough of a UGA codon in Sindbis virus RNA involves a single cytidine residue immediately downstream of the termination codon. Li G; Rice CM J Virol; 1993 Aug; 67(8):5062-7. PubMed ID: 8331741 [TBL] [Abstract][Full Text] [Related]
38. Selenium-Dependent Read Through of the Conserved 3'-Terminal UGA Stop Codon of HIV-1 nef. Premadasa LS; Dailey GP; Ruzicka JA; Taylor EW Am J Biopharm Pharm Sci; 2021; 1():. PubMed ID: 35128545 [TBL] [Abstract][Full Text] [Related]
39. The vitamin D hormone and its nuclear receptor: molecular actions and disease states. Haussler MR; Haussler CA; Jurutka PW; Thompson PD; Hsieh JC; Remus LS; Selznick SH; Whitfield GK J Endocrinol; 1997 Sep; 154 Suppl():S57-73. PubMed ID: 9379138 [TBL] [Abstract][Full Text] [Related]