These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 29386509)

  • 1. Platinum-bearing chromite layers are caused by pressure reduction during magma ascent.
    Latypov R; Costin G; Chistyakova S; Hunt EJ; Mukherjee R; Naldrett T
    Nat Commun; 2018 Jan; 9(1):462. PubMed ID: 29386509
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monomineralic anorthosites in layered intrusions are indicators of the magma chamber replenishment by plagioclase-only-saturated melts.
    Latypov R; Chistyakova S; Costin G; Namur O; Barnes S; Kruger W
    Sci Rep; 2020 Mar; 10(1):3839. PubMed ID: 32123247
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chromitite layers indicate the existence of large, long-lived, and entirely molten magma chambers.
    Latypov R; Chistyakova S; Barnes SJ; Godel B; Delaney GW; Cleary PW; Radermacher VJ; Campbell I; Jakata K
    Sci Rep; 2022 Mar; 12(1):4092. PubMed ID: 35260759
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Survival times of anomalous melt inclusions from element diffusion in olivine and chromite.
    Spandler C; O'Neill HS; Kamenetsky VS
    Nature; 2007 May; 447(7142):303-6. PubMed ID: 17507980
    [TBL] [Abstract][Full Text] [Related]  

  • 5. U-Pb geochronology documents out-of-sequence emplacement of ultramafic layers in the Bushveld Igneous Complex of South Africa.
    Mungall JE; Kamo SL; McQuade S
    Nat Commun; 2016 Nov; 7():13385. PubMed ID: 27841347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distinctive melt activity and chromite mineralization in Luobusa and Purang ophiolites, southern Tibet: constraints from trace element compositions of chromite and olivine.
    Su B; Zhou M; Jing J; Robinson PT; Chen C; Xiao Y; Liu X; Shi R; Lenaz D; Hu Y
    Sci Bull (Beijing); 2019 Jan; 64(2):108-121. PubMed ID: 36659634
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromite-induced magnesium isotope fractionation during mafic magma differentiation.
    Su BX; Hu Y; Teng FZ; Qin KZ; Bai Y; Sakyi PA; Tang DM
    Sci Bull (Beijing); 2017 Nov; 62(22):1538-1546. PubMed ID: 36659432
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Rustenburg Layered Suite formed as a stack of mush with transient magma chambers.
    Yao Z; Mungall JE; Jenkins MC
    Nat Commun; 2021 Jan; 12(1):505. PubMed ID: 33479217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A 5-km-thick reservoir with > 380,000 km
    Latypov R; Chistyakova S; Hornsey RA; Costin G; van der Merwe M
    Sci Rep; 2022 Sep; 12(1):15651. PubMed ID: 36123429
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chromite chemistry of a massive chromitite seam in the northern limb of the Bushveld Igneous Complex, South Africa: correlation with the UG-2 in the eastern and western limbs and evidence of variable assimilation of footwall rocks.
    Langa MM; Jugo PJ; Leybourne MI; Grobler DF; Adetunji J; Skogby H
    Miner Depos; 2021; 56(1):31-44. PubMed ID: 33518810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strontium isotopic resolution of magma dynamics in a layered intrusion.
    Gray CM; Goode ADT
    Nature; 1981 Nov; 294(5837):155-157. PubMed ID: 29451260
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Configurational entropy of basaltic melts in Earth's mantle.
    Lee SK; Mosenfelder JL; Park SY; Lee AC; Asimow PD
    Proc Natl Acad Sci U S A; 2020 Sep; 117(36):21938-21944. PubMed ID: 32839310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the conditions of magma mixing and its bearing on andesite production in the crust.
    Laumonier M; Scaillet B; Pichavant M; Champallier R; Andujar J; Arbaret L
    Nat Commun; 2014 Dec; 5():5607. PubMed ID: 25500902
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magmatic karst reveals dynamics of crystallization and differentiation in basaltic magma chambers.
    Kruger W; Latypov R
    Sci Rep; 2021 Apr; 11(1):7341. PubMed ID: 33795758
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and density of basaltic melts at mantle conditions from first-principles simulations.
    Bajgain S; Ghosh DB; Karki BB
    Nat Commun; 2015 Oct; 6():8578. PubMed ID: 26450568
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural dynamics of basaltic melt at mantle conditions with implications for magma oceans and superplumes.
    Majumdar A; Wu M; Pan Y; Iitaka T; Tse JS
    Nat Commun; 2020 Sep; 11(1):4815. PubMed ID: 32968073
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Merensky-type platinum deposits and a reappraisal of magma chamber paradigms.
    Chistyakova S; Latypov R; Hunt EJ; Barnes S
    Sci Rep; 2019 Jun; 9(1):8807. PubMed ID: 31217454
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of syn-eruptive plagioclase disequilibrium crystallization in basaltic magma ascent dynamics.
    La Spina G; Burton M; De' Michieli Vitturi M; Arzilli F
    Nat Commun; 2016 Dec; 7():13402. PubMed ID: 27941750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Degassing during quiescence as a trigger of magma ascent and volcanic eruptions.
    Girona T; Costa F; Schubert G
    Sci Rep; 2015 Dec; 5():18212. PubMed ID: 26666396
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for a late chondritic veneer in the Earth's mantle from high-pressure partitioning of palladium and platinum.
    Holzheid A; Sylvester P; O'Neill HS; Rubie DC; Palme HS
    Nature; 2000 Jul; 406(6794):396-9. PubMed ID: 10935633
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.