These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 29386576)
1. Analogies of the classical Euler top with a rotor to spin squeezing and quantum phase transitions in a generalized Lipkin-Meshkov-Glick model. Opatrný T; Richterek L; Opatrný M Sci Rep; 2018 Jan; 8(1):1984. PubMed ID: 29386576 [TBL] [Abstract][Full Text] [Related]
2. Realization of chiral two-mode Lipkin-Meshkov-Glick models via acoustics. Zhou Y; Wang JW; Cao LZ; Wang GH; Shi ZY; Lü DY; Huang HB; Hu CS Rep Prog Phys; 2024 Sep; 87(10):. PubMed ID: 39260394 [TBL] [Abstract][Full Text] [Related]
3. Global quantum discord in the Lipkin-Meshkov-Glick model at zero and finite temperatures. Bao J; Liu YH; Guo B J Phys Condens Matter; 2021 Sep; 33(49):. PubMed ID: 34517354 [TBL] [Abstract][Full Text] [Related]
4. Interaction-induced Lipkin-Meshkov-Glick model in a Bose-Einstein condensate inside an optical cavity. Chen G; Liang JQ; Jia S Opt Express; 2009 Oct; 17(22):19682-90. PubMed ID: 19997188 [TBL] [Abstract][Full Text] [Related]
5. Dynamical quantum phase transitions in the dissipative Lipkin-Meshkov-Glick model with proposed realization in optical cavity QED. Morrison S; Parkins AS Phys Rev Lett; 2008 Feb; 100(4):040403. PubMed ID: 18352244 [TBL] [Abstract][Full Text] [Related]
6. Non-Markovianity of a Central Spin Interacting with a Lipkin-Meshkov-Glick Bath via a Conditional Past-Future Correlation. Han L; Zou J; Li H; Shao B Entropy (Basel); 2020 Aug; 22(8):. PubMed ID: 33286664 [TBL] [Abstract][Full Text] [Related]
7. Excited-state quantum phase transitions and the entropy of the work distribution in the anharmonic Lipkin-Meshkov-Glick model. Zhang H; Qian Y; Niu ZX; Wang Q Phys Rev E; 2024 Jun; 109(6-1):064110. PubMed ID: 39021010 [TBL] [Abstract][Full Text] [Related]
8. Quantum phase transitions in networks of Lipkin-Meshkov-Glick models. Sorokin AV; Bastidas VM; Brandes T Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042141. PubMed ID: 25375472 [TBL] [Abstract][Full Text] [Related]
9. Entanglement and spin squeezing in non-Hermitian phase transitions. Lee TE; Reiter F; Moiseyev N Phys Rev Lett; 2014 Dec; 113(25):250401. PubMed ID: 25554863 [TBL] [Abstract][Full Text] [Related]
11. Classical description of the parameter space geometry in the Dicke and Lipkin-Meshkov-Glick models. Gonzalez D; Gutiérrez-Ruiz D; Vergara JD Phys Rev E; 2021 Jul; 104(1-1):014113. PubMed ID: 34412288 [TBL] [Abstract][Full Text] [Related]
12. Probing dynamical phase transitions with a superconducting quantum simulator. Xu K; Sun ZH; Liu W; Zhang YR; Li H; Dong H; Ren W; Zhang P; Nori F; Zheng D; Fan H; Wang H Sci Adv; 2020 Jun; 6(25):eaba4935. PubMed ID: 32596458 [TBL] [Abstract][Full Text] [Related]
13. ac-Driven quantum phase transition in the Lipkin-Meshkov-Glick model. Engelhardt G; Bastidas VM; Emary C; Brandes T Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):052110. PubMed ID: 23767490 [TBL] [Abstract][Full Text] [Related]
14. Nonadiabatic dynamics of the excited states for the Lipkin-Meshkov-Glick model. Kopylov W; Schaller G; Brandes T Phys Rev E; 2017 Jul; 96(1-1):012153. PubMed ID: 29347272 [TBL] [Abstract][Full Text] [Related]
15. Reduced fidelity susceptibility and its finite-size scaling behaviors in the Lipkin-Meshkov-Glick model. Ma J; Xu L; Xiong HN; Wang X Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Nov; 78(5 Pt 1):051126. PubMed ID: 19113114 [TBL] [Abstract][Full Text] [Related]
16. Quantum criticality of the Lipkin-Meshkov-Glick model in terms of fidelity susceptibility. Kwok HM; Ning WQ; Gu SJ; Lin HQ Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 1):032103. PubMed ID: 18851088 [TBL] [Abstract][Full Text] [Related]