These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

343 related articles for article (PubMed ID: 29387036)

  • 1. Pseudotumor Cerebri and Glymphatic Dysfunction.
    Bezerra MLS; Ferreira ACAF; de Oliveira-Souza R
    Front Neurol; 2017; 8():734. PubMed ID: 29387036
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of the glymphatic system in idiopathic intracranial hypertension.
    Steinruecke M; Tiefenbach J; Park JJ; Kaliaperumal C
    Clin Neurol Neurosurg; 2022 Nov; 222():107446. PubMed ID: 36183631
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Idiopathic intracranial hypertension: The veno glymphatic connections.
    Lenck S; Radovanovic I; Nicholson P; Hodaie M; Krings T; Mendes-Pereira V
    Neurology; 2018 Sep; 91(11):515-522. PubMed ID: 30201744
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The glymphatic pathway in neurological disorders.
    Rasmussen MK; Mestre H; Nedergaard M
    Lancet Neurol; 2018 Nov; 17(11):1016-1024. PubMed ID: 30353860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Role of Arachnoid Granulations and the Glymphatic System in the Pathophysiology of Idiopathic Intracranial Hypertension.
    Mondejar V; Patsalides A
    Curr Neurol Neurosci Rep; 2020 May; 20(7):20. PubMed ID: 32444998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuous Theta-Burst Stimulation Promotes Paravascular CSF-Interstitial Fluid Exchange through Regulation of Aquaporin-4 Polarization in APP/PS1 Mice.
    Wu C; Lin T; Ding Q; Zhang N; Ou ZT; Cai GY; Chen HY; Xu JY; Li G; Pei Z; Xu GQ; Lan Y
    Mediators Inflamm; 2022; 2022():2140524. PubMed ID: 36032783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new glaucoma hypothesis: a role of glymphatic system dysfunction.
    Wostyn P; Van Dam D; Audenaert K; Killer HE; De Deyn PP; De Groot V
    Fluids Barriers CNS; 2015 Jun; 12():16. PubMed ID: 26118970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glymphatic System as a Gateway to Connect Neurodegeneration From Periphery to CNS.
    Natale G; Limanaqi F; Busceti CL; Mastroiacovo F; Nicoletti F; Puglisi-Allegra S; Fornai F
    Front Neurosci; 2021; 15():639140. PubMed ID: 33633540
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The glymphatic system and its involvement in disorders of the nervous system.
    Toriello M; González-Quintanilla V; Pascual J
    Med Clin (Barc); 2021 Apr; 156(7):339-343. PubMed ID: 33423825
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Space Flight-Associated Neuroocular Syndrome, Idiopathic Intracranial Hypertension, and Pseudotumor Cerebri: Phenotypic Descriptions, Pathogenesis, and Hydrodynamics.
    Kesserwani H
    Cureus; 2021 Mar; 13(3):e14103. PubMed ID: 33907644
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Is bulk flow plausible in perivascular, paravascular and paravenous channels?
    Faghih MM; Sharp MK
    Fluids Barriers CNS; 2018 Jun; 15(1):17. PubMed ID: 29903035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Paravascular Pathway for Brain Waste Clearance: Current Understanding, Significance and Controversy.
    Bacyinski A; Xu M; Wang W; Hu J
    Front Neuroanat; 2017; 11():101. PubMed ID: 29163074
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Idiopathic Intracranial Hypertension: Glymphedema of the Brain.
    Nicholson P; Kedra A; Shotar E; Bonnin S; Boch AL; Shor N; Clarençon F; Touitou V; Lenck S
    J Neuroophthalmol; 2021 Mar; 41(1):93-97. PubMed ID: 33034442
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intracranial pressure elevation alters CSF clearance pathways.
    Vinje V; Eklund A; Mardal KA; Rognes ME; Støverud KH
    Fluids Barriers CNS; 2020 Apr; 17(1):29. PubMed ID: 32299464
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Idiopathic intracranial hypertension in patients with cerebral small vessel disease: A case report.
    Liu W; Jia L; Xu L; Yang F; Cheng H; Li H; Hou J; Zhang D; Liu Y
    Medicine (Baltimore); 2023 Jan; 102(1):e32639. PubMed ID: 36607854
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of brain barriers in fluid movement in the CNS: is there a 'glymphatic' system?
    Abbott NJ; Pizzo ME; Preston JE; Janigro D; Thorne RG
    Acta Neuropathol; 2018 Mar; 135(3):387-407. PubMed ID: 29428972
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Men Are from Mars, Idiopathic Intracranial Hypertension Is from Venous: The Role of Venous Sinus Stenosis and Stenting in Idiopathic Intracranial Hypertension.
    Dinkin M; Oliveira C
    Semin Neurol; 2019 Dec; 39(6):692-703. PubMed ID: 31847040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impaired Glymphatic Transport in Spontaneously Hypertensive Rats.
    Mortensen KN; Sanggaard S; Mestre H; Lee H; Kostrikov S; Xavier ALR; Gjedde A; Benveniste H; Nedergaard M
    J Neurosci; 2019 Aug; 39(32):6365-6377. PubMed ID: 31209176
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Glymphatic-Lymphatic Continuum: Opportunities for Osteopathic Manipulative Medicine.
    Hitscherich K; Smith K; Cuoco JA; Ruvolo KE; Mancini JD; Leheste JR; Torres G
    J Am Osteopath Assoc; 2016 Mar; 116(3):170-7. PubMed ID: 26927910
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding the complex pathophysiology of idiopathic intracranial hypertension and the evolving role of venous sinus stenting: a comprehensive review of the literature.
    Giridharan N; Patel SK; Ojugbeli A; Nouri A; Shirani P; Grossman AW; Cheng J; Zuccarello M; Prestigiacomo CJ
    Neurosurg Focus; 2018 Jul; 45(1):E10. PubMed ID: 29961379
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.