These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 29387071)

  • 1. Sunflower Hybrid Breeding: From Markers to Genomic Selection.
    Dimitrijevic A; Horn R
    Front Plant Sci; 2017; 8():2238. PubMed ID: 29387071
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancement of Plant Productivity in the Post-Genomics Era.
    Thao NP; Tran LS
    Curr Genomics; 2016 Aug; 17(4):295-6. PubMed ID: 27499678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-Wide Association Studies in Sunflower: Towards Sclerotinia sclerotiorum and Diaporthe/Phomopsis Resistance Breeding.
    Filippi CV; Corro Molas A; Dominguez M; Colombo D; Heinz N; Troglia C; Maringolo C; Quiroz F; Alvarez D; Lia V; Paniego N
    Genes (Basel); 2022 Dec; 13(12):. PubMed ID: 36553624
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diversity analysis and genomic prediction of Sclerotinia resistance in sunflower using a new 25 K SNP genotyping array.
    Livaja M; Unterseer S; Erath W; Lehermeier C; Wieseke R; Plieske J; Polley A; Luerßen H; Wieckhorst S; Mascher M; Hahn V; Ouzunova M; Schön CC; Ganal MW
    Theor Appl Genet; 2016 Feb; 129(2):317-29. PubMed ID: 26536890
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of genomic tools in plant breeding.
    Pérez-de-Castro AM; Vilanova S; Cañizares J; Pascual L; Blanca JM; Díez MJ; Prohens J; Picó B
    Curr Genomics; 2012 May; 13(3):179-95. PubMed ID: 23115520
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Candidate gene association mapping of Sclerotinia stalk rot resistance in sunflower (Helianthus annuus L.) uncovers the importance of COI1 homologs.
    Talukder ZI; Hulke BS; Qi L; Scheffler BE; Pegadaraju V; McPhee K; Gulya TJ
    Theor Appl Genet; 2014 Jan; 127(1):193-209. PubMed ID: 24193356
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic and physiological characterization of sunflower resistance provided by the wild-derived Or
    Fernández-Aparicio M; Del Moral L; Muños S; Velasco L; Pérez-Vich B
    Theor Appl Genet; 2022 Feb; 135(2):501-525. PubMed ID: 34741641
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-Wide Association Study for Major Biofuel Traits in Sorghum Using Minicore Collection.
    Rayaprolu L; Selvanayagam S; Rao DM; Gupta R; Das RR; Rathore A; Gandham P; Kiranmayee KNSU; Deshpande SP; Are AK
    Protein Pept Lett; 2021; 28(8):909-928. PubMed ID: 33588716
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent Advances in Sugarcane Genomics, Physiology, and Phenomics for Superior Agronomic Traits.
    Meena MR; Appunu C; Arun Kumar R; Manimekalai R; Vasantha S; Krishnappa G; Kumar R; Pandey SK; Hemaprabha G
    Front Genet; 2022; 13():854936. PubMed ID: 35991570
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome wide association and genomic prediction for growth traits in juvenile farmed Atlantic salmon using a high density SNP array.
    Tsai HY; Hamilton A; Tinch AE; Guy DR; Gharbi K; Stear MJ; Matika O; Bishop SC; Houston RD
    BMC Genomics; 2015 Nov; 16():969. PubMed ID: 26582102
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Quantitative Genetic Study of Sclerotinia Head Rot Resistance Introgressed from the Wild Perennial
    Talukder ZI; Underwood W; Misar CG; Seiler GJ; Cai X; Li X; Qi L
    Int J Mol Sci; 2022 Jul; 23(14):. PubMed ID: 35887074
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The sunflower genome provides insights into oil metabolism, flowering and Asterid evolution.
    Badouin H; Gouzy J; Grassa CJ; Murat F; Staton SE; Cottret L; Lelandais-Brière C; Owens GL; Carrère S; Mayjonade B; Legrand L; Gill N; Kane NC; Bowers JE; Hubner S; Bellec A; Bérard A; Bergès H; Blanchet N; Boniface MC; Brunel D; Catrice O; Chaidir N; Claudel C; Donnadieu C; Faraut T; Fievet G; Helmstetter N; King M; Knapp SJ; Lai Z; Le Paslier MC; Lippi Y; Lorenzon L; Mandel JR; Marage G; Marchand G; Marquand E; Bret-Mestries E; Morien E; Nambeesan S; Nguyen T; Pegot-Espagnet P; Pouilly N; Raftis F; Sallet E; Schiex T; Thomas J; Vandecasteele C; Varès D; Vear F; Vautrin S; Crespi M; Mangin B; Burke JM; Salse J; Muños S; Vincourt P; Rieseberg LH; Langlade NB
    Nature; 2017 Jun; 546(7656):148-152. PubMed ID: 28538728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aquaculture genomics, genetics and breeding in the United States: current status, challenges, and priorities for future research.
    ; Abdelrahman H; ElHady M; Alcivar-Warren A; Allen S; Al-Tobasei R; Bao L; Beck B; Blackburn H; Bosworth B; Buchanan J; Chappell J; Daniels W; Dong S; Dunham R; Durland E; Elaswad A; Gomez-Chiarri M; Gosh K; Guo X; Hackett P; Hanson T; Hedgecock D; Howard T; Holland L; Jackson M; Jin Y; Khalil K; Kocher T; Leeds T; Li N; Lindsey L; Liu S; Liu Z; Martin K; Novriadi R; Odin R; Palti Y; Peatman E; Proestou D; Qin G; Reading B; Rexroad C; Roberts S; Salem M; Severin A; Shi H; Shoemaker C; Stiles S; Tan S; Tang KF; Thongda W; Tiersch T; Tomasso J; Prabowo WT; Vallejo R; van der Steen H; Vo K; Waldbieser G; Wang H; Wang X; Xiang J; Yang Y; Yant R; Yuan Z; Zeng Q; Zhou T
    BMC Genomics; 2017 Feb; 18(1):191. PubMed ID: 28219347
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development and dissection of diagnostic SNP markers for the downy mildew resistance genes Pl
    Qi LL; Talukder ZI; Hulke BS; Foley ME
    Mol Genet Genomics; 2017 Jun; 292(3):551-563. PubMed ID: 28160079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Achievements and prospects of genomics-assisted breeding in three legume crops of the semi-arid tropics.
    Varshney RK; Mohan SM; Gaur PM; Gangarao NV; Pandey MK; Bohra A; Sawargaonkar SL; Chitikineni A; Kimurto PK; Janila P; Saxena KB; Fikre A; Sharma M; Rathore A; Pratap A; Tripathi S; Datta S; Chaturvedi SK; Mallikarjuna N; Anuradha G; Babbar A; Choudhary AK; Mhase MB; Bharadwaj Ch; Mannur DM; Harer PN; Guo B; Liang X; Nadarajan N; Gowda CL
    Biotechnol Adv; 2013 Dec; 31(8):1120-34. PubMed ID: 23313999
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unveiling the genetic basis of Sclerotinia head rot resistance in sunflower.
    Filippi CV; Zubrzycki JE; Di Rienzo JA; Quiroz FJ; Puebla AF; Alvarez D; Maringolo CA; Escande AR; Hopp HE; Heinz RA; Paniego NB; Lia VV
    BMC Plant Biol; 2020 Jul; 20(1):322. PubMed ID: 32641108
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic and Genomic Tools in Sunflower Breeding for Broomrape Resistance.
    Cvejić S; Radanović A; Dedić B; Jocković M; Jocić S; Miladinović D
    Genes (Basel); 2020 Jan; 11(2):. PubMed ID: 32019223
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genomic Insights Into Sclerotinia Basal Stalk Rot Resistance Introgressed From Wild
    Talukder ZI; Underwood W; Misar CG; Seiler GJ; Cai X; Li X; Qi L
    Front Plant Sci; 2022; 13():840954. PubMed ID: 35665155
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genotype Imputation To Improve the Cost-Efficiency of Genomic Selection in Farmed Atlantic Salmon.
    Tsai HY; Matika O; Edwards SM; Antolín-Sánchez R; Hamilton A; Guy DR; Tinch AE; Gharbi K; Stear MJ; Taggart JB; Bron JE; Hickey JM; Houston RD
    G3 (Bethesda); 2017 Apr; 7(4):1377-1383. PubMed ID: 28250015
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-Wide SNP Markers Accelerate Perennial Forest Tree Breeding Rate for Disease Resistance through Marker-Assisted and Genome-Wide Selection.
    Younessi-Hamzekhanlu M; Gailing O
    Int J Mol Sci; 2022 Oct; 23(20):. PubMed ID: 36293169
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.