BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 29387086)

  • 21. Evolved gas analysis and slow pyrolysis mechanism of bamboo by thermogravimetric analysis, Fourier transform infrared spectroscopy and gas chromatography-mass spectrometry.
    Wu X; Ba Y; Wang X; Niu M; Fang K
    Bioresour Technol; 2018 Oct; 266():407-412. PubMed ID: 29982064
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Lignocellulosic biomass-based pyrolysis: A comprehensive review.
    K N Y; T PD; P S; S K; R YK; Varjani S; AdishKumar S; Kumar G; J RB
    Chemosphere; 2022 Jan; 286(Pt 2):131824. PubMed ID: 34388872
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Lignocellulosic biomass: Acid and alkaline pretreatments and their effects on biomass recalcitrance - Conventional processing and recent advances.
    Lorenci Woiciechowski A; Dalmas Neto CJ; Porto de Souza Vandenberghe L; de Carvalho Neto DP; Novak Sydney AC; Letti LAJ; Karp SG; Zevallos Torres LA; Soccol CR
    Bioresour Technol; 2020 May; 304():122848. PubMed ID: 32113832
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Green catalyst for clean fuel production via hydrodeoxygenation.
    Bilge S; Donar YO; Ergenekon S; Özoylumlu B; Sinağ A
    Turk J Chem; 2023; 47(5):968-990. PubMed ID: 38173737
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pyrolysis of waste animal fats in a fixed-bed reactor: production and characterization of bio-oil and bio-char.
    Ben Hassen-Trabelsi A; Kraiem T; Naoui S; Belayouni H
    Waste Manag; 2014 Jan; 34(1):210-8. PubMed ID: 24129214
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Supercritical CO2 fractionation of bio-oil produced from wheat-hemlock biomass.
    Naik S; Goud VV; Rout PK; Dalai AK
    Bioresour Technol; 2010 Oct; 101(19):7605-13. PubMed ID: 20493681
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [The Chemical Composition of Bamboo after Heat Pretreatment with Fourier Infrared Spectrum Analysis].
    Chu J; Ma L; Zhang JH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Nov; 36(11):3557-62. PubMed ID: 30198674
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Advanced mono- and multi-dimensional gas chromatography-mass spectrometry techniques for oxygen-containing compound characterization in biomass and biofuel samples.
    Beccaria M; Siqueira ALM; Maniquet A; Giusti P; Piparo M; Stefanuto PH; Focant JF
    J Sep Sci; 2021 Jan; 44(1):115-134. PubMed ID: 33185940
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Formation and reactions of negative ions relevant to chemical ionization mass spectrometry. I. CL mass spectra of organic compounds produced by F- reactions.
    Tiernan TO; Chang C; Cheng CC
    Environ Health Perspect; 1980 Jun; 36():47-62. PubMed ID: 7428746
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Novel Strategies for the Production of Fuels, Lubricants, and Chemicals from Biomass.
    Shylesh S; Gokhale AA; Ho CR; Bell AT
    Acc Chem Res; 2017 Oct; 50(10):2589-2597. PubMed ID: 28930430
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influences of the Reaction Temperature and Catalysts on the Pyrolysis Product Distribution of Lignocellulosic Biomass (Aspen Wood and Rice Husk).
    Sun T; Chen Z; Wang R; Yang Y; Zhang L; Li Y; Liu P; Lei T
    Polymers (Basel); 2023 Jul; 15(14):. PubMed ID: 37514493
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Detailed Componential Characterization of Extractable Species with Organic Solvents from Wheat Straw.
    Lu YC; Lu Y; Lu ZL; Wei XY
    Int J Anal Chem; 2017; 2017():7305682. PubMed ID: 29209369
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of municipal solid waste residues for hydrothermal liquefaction into liquid transportation fuels.
    Okoligwe O; Radu T; Leaper MC; Wagner JL
    Waste Manag; 2022 Mar; 140():133-142. PubMed ID: 35078077
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Study on the Staged and Direct Fast Pyrolysis Behavior of Waste Pine Sawdust Using High Heating Rate TG-FTIR and Py-GC/MS.
    Zhang J; Sekyere DT; Niwamanya N; Huang Y; Barigye A; Tian Y
    ACS Omega; 2022 Feb; 7(5):4245-4256. PubMed ID: 35155917
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A review on selective production of value-added chemicals via catalytic pyrolysis of lignocellulosic biomass.
    Dai L; Wang Y; Liu Y; He C; Ruan R; Yu Z; Jiang L; Zeng Z; Wu Q
    Sci Total Environ; 2020 Dec; 749():142386. PubMed ID: 33370899
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Screening of synthetic PDE-5 inhibitors and their analogues as adulterants: analytical techniques and challenges.
    Patel DN; Li L; Kee CL; Ge X; Low MY; Koh HL
    J Pharm Biomed Anal; 2014 Jan; 87():176-90. PubMed ID: 23721687
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Physicochemical Properties, Thermal Stability, and Pyrolysis Behavior of Antioxidative Lignin from Water Chestnut Shell Obtained with Ternary Deep Eutectic Solvents.
    Li F; Lv W; Huang D; Zeng C; Wang R
    Molecules; 2023 May; 28(10):. PubMed ID: 37241829
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fast microwave-assisted acidolysis: a new biorefinery approach for the zero-waste utilisation of lignocellulosic biomass to produce high quality lignin and fermentable saccharides.
    Zhou L; Santomauro F; Fan J; Macquarrie D; Clark J; Chuck CJ; Budarin V
    Faraday Discuss; 2017 Sep; 202():351-370. PubMed ID: 28665433
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fast Pyrolysis of Cellulose and the Effect of a Catalyst on Product Distribution.
    Sun T; Zhang L; Yang Y; Li Y; Ren S; Dong L; Lei T
    Int J Environ Res Public Health; 2022 Dec; 19(24):. PubMed ID: 36554724
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sooting tendencies of oxygenated hydrocarbons in laboratory-scale flames.
    McEnally CS; Pfefferle LD
    Environ Sci Technol; 2011 Mar; 45(6):2498-503. PubMed ID: 21329344
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.