BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 29387789)

  • 41. Genetic evidence for a microtubule-destabilizing effect of conventional kinesin and analysis of its consequences for the control of nuclear distribution in Aspergillus nidulans.
    Requena N; Alberti-Segui C; Winzenburg E; Horn C; Schliwa M; Philippsen P; Liese R; Fischer R
    Mol Microbiol; 2001 Oct; 42(1):121-32. PubMed ID: 11679072
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The role of actin, fimbrin and endocytosis in growth of hyphae in Aspergillus nidulans.
    Upadhyay S; Shaw BD
    Mol Microbiol; 2008 May; 68(3):690-705. PubMed ID: 18331474
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Aspergillus nidulans ArfB plays a role in endocytosis and polarized growth.
    Lee SC; Schmidtke SN; Dangott LJ; Shaw BD
    Eukaryot Cell; 2008 Aug; 7(8):1278-88. PubMed ID: 18539885
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Transport of fungal RAB11 secretory vesicles involves myosin-5, dynein/dynactin/p25, and kinesin-1 and is independent of kinesin-3.
    Peñalva MA; Zhang J; Xiang X; Pantazopoulou A
    Mol Biol Cell; 2017 Apr; 28(7):947-961. PubMed ID: 28209731
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Microtubule plus end-tracking proteins play critical roles in directional growth of hyphae by regulating the dynamics of cytoplasmic microtubules in Aspergillus nidulans.
    Zeng CJ; Kim HR; Vargas Arispuro I; Kim JM; Huang AC; Liu B
    Mol Microbiol; 2014 Nov; 94(3):506-21. PubMed ID: 25213466
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Fluorescent markers for the Spitzenkörper and exocytosis in Zymoseptoria tritici.
    Guo M; Kilaru S; Schuster M; Latz M; Steinberg G
    Fungal Genet Biol; 2015 Jun; 79():158-65. PubMed ID: 26092802
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Induction of cell wall thickening by the antifungal compound dihydromaltophilin disrupts fungal growth and is mediated by sphingolipid biosynthesis.
    Li S; Calvo AM; Yuen GY; Du L; Harris SD
    J Eukaryot Microbiol; 2009; 56(2):182-7. PubMed ID: 21462551
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Septum-directed secretion in the filamentous fungus Aspergillus oryzae.
    Hayakawa Y; Ishikawa E; Shoji JY; Nakano H; Kitamoto K
    Mol Microbiol; 2011 Jul; 81(1):40-55. PubMed ID: 21564341
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Characterisation of Aspergillus nidulans polarisome component BemA.
    Leeder AC; Turner G
    Fungal Genet Biol; 2008 Jun; 45(6):897-911. PubMed ID: 18234530
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Discovery of a vezatin-like protein for dynein-mediated early endosome transport.
    Yao X; Arst HN; Wang X; Xiang X
    Mol Biol Cell; 2015 Nov; 26(21):3816-27. PubMed ID: 26378255
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Localization and function of calmodulin in live-cells of Aspergillus nidulans.
    Chen S; Song Y; Cao J; Wang G; Wei H; Xu X; Lu L
    Fungal Genet Biol; 2010 Mar; 47(3):268-78. PubMed ID: 20034586
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The role of flotillin FloA and stomatin StoA in the maintenance of apical sterol-rich membrane domains and polarity in the filamentous fungus Aspergillus nidulans.
    Takeshita N; Diallinas G; Fischer R
    Mol Microbiol; 2012 Mar; 83(6):1136-52. PubMed ID: 22329814
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Genetic evidence for a microtubule-capture mechanism during polarised growth of Aspergillus nidulans.
    Manck R; Ishitsuka Y; Herrero S; Takeshita N; Nienhaus GU; Fischer R
    J Cell Sci; 2015 Oct; 128(19):3569-82. PubMed ID: 26272919
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Class V chitin synthase and β(1,3)-glucan synthase co-travel in the same vesicle in Zymoseptoria tritici.
    Schuster M; Guiu-Aragones C; Steinberg G
    Fungal Genet Biol; 2020 Feb; 135():103286. PubMed ID: 31672687
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Fluorescent proteins illuminate the structure and function of the hyphal tip apparatus.
    Sudbery P
    Fungal Genet Biol; 2011 Sep; 48(9):849-57. PubMed ID: 21362491
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Regulation of hyphal morphogenesis and the DNA damage response by the Aspergillus nidulans ATM homolog AtmA.
    Malavazi I; Semighini CP; Kress MR; Harris SD; Goldman GH
    Genetics; 2006 May; 173(1):99-109. PubMed ID: 16415361
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Localization of NPFxD motif-containing proteins in Aspergillus nidulans.
    Commer B; Schultzhaus Z; Shaw BD
    Fungal Genet Biol; 2020 Aug; 141():103412. PubMed ID: 32445863
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Differential expression of the chitin synthase genes of Aspergillus nidulans, chsA, chsB, and chsC, in response to developmental status and environmental factors.
    Lee JI; Choi JH; Park BC; Park YH; Lee MY; Park HM; Maeng PJ
    Fungal Genet Biol; 2004 Jun; 41(6):635-46. PubMed ID: 15121085
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Nuclear traffic in fungal hyphae: in vivo study of nuclear migration and positioning in Aspergillus nidulans.
    Suelmann R; Sievers N; Fischer R
    Mol Microbiol; 1997 Aug; 25(4):757-69. PubMed ID: 9379904
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Phospholipid flippases DnfA and DnfB exhibit differential dynamics within the A. nidulans Spitzenkörper.
    Schultzhaus Z; Zheng W; Wang Z; Mouriño-Pérez R; Shaw B
    Fungal Genet Biol; 2017 Feb; 99():26-28. PubMed ID: 28034798
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.