These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 29387847)

  • 1. Kinetic Monte Carlo simulations of water ice porosity: extrapolations of deposition parameters from the laboratory to interstellar space.
    Clements AR; Berk B; Cooke IR; Garrod RT
    Phys Chem Chem Phys; 2018 Feb; 20(8):5553-5568. PubMed ID: 29387847
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in the morphology of interstellar ice analogues after hydrogen atom exposure.
    Accolla M; Congiu E; Dulieu F; Manicò G; Chaabouni H; Matar E; Mokrane H; Lemaire JL; Pirronello V
    Phys Chem Chem Phys; 2011 May; 13(17):8037-45. PubMed ID: 21445409
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Water formation through O2 + D pathway on cold silicate and amorphous water ice surfaces of interstellar interest.
    Chaabouni H; Minissale M; Manicò G; Congiu E; Noble JA; Baouche S; Accolla M; Lemaire JL; Pirronello V; Dulieu F
    J Chem Phys; 2012 Dec; 137(23):234706. PubMed ID: 23267497
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interactions of adsorbed CO₂ on water ice at low temperatures.
    Karssemeijer LJ; de Wijs GA; Cuppen HM
    Phys Chem Chem Phys; 2014 Aug; 16(29):15630-9. PubMed ID: 24955794
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monte Carlo studies of surface chemistry and nonthermal desorption involving interstellar grains.
    Herbst E; Cuppen HM
    Proc Natl Acad Sci U S A; 2006 Aug; 103(33):12257-62. PubMed ID: 16894170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal and nonthermal physiochemical processes in nanoscale films of amorphous solid water.
    Smith RS; Petrik NG; Kimmel GA; Kay BD
    Acc Chem Res; 2012 Jan; 45(1):33-42. PubMed ID: 21627126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction of atomic and molecular deuterium with a nonporous amorphous water ice surface between 8 and 30 K.
    Amiaud L; Dulieu F; Fillion JH; Momeni A; Lemaire JL
    J Chem Phys; 2007 Oct; 127(14):144709. PubMed ID: 17935425
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Behavior of Hydroxyl Radicals on Water Ice at Low Temperatures.
    Tsuge M; Watanabe N
    Acc Chem Res; 2021 Feb; 54(3):471-480. PubMed ID: 33443993
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption of PAHs on interstellar ice viewed by classical molecular dynamics.
    Michoulier E; Noble JA; Simon A; Mascetti J; Toubin C
    Phys Chem Chem Phys; 2018 Mar; 20(13):8753-8764. PubMed ID: 29541718
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photodesorption from low-temperature water ice in interstellar and circumsolar grains.
    Westley MS; Baragiola RA; Johnson RE; Baratta GA
    Nature; 1995 Feb; 373(6513):405-7. PubMed ID: 7830792
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Water formation at low temperatures by surface O2 hydrogenation III: Monte Carlo simulation.
    Lamberts T; Cuppen HM; Ioppolo S; Linnartz H
    Phys Chem Chem Phys; 2013 Jun; 15(21):8287-302. PubMed ID: 23615955
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trapping and release of CO2 guest molecules by amorphous ice.
    Malyk S; Kumi G; Reisler H; Wittig C
    J Phys Chem A; 2007 Dec; 111(51):13365-70. PubMed ID: 18047299
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Porosity and thermal collapse measurements of H2O, CH3OH, CO2, and H2O:CO2 ices.
    Isokoski K; Bossa JB; Triemstra T; Linnartz H
    Phys Chem Chem Phys; 2014 Feb; 16(8):3456-65. PubMed ID: 24406807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of D2 with H2O amorphous ice studied by temperature-programmed desorption experiments.
    Amiaud L; Fillion JH; Baouche S; Dulieu F; Momeni A; Lemaire JL
    J Chem Phys; 2006 Mar; 124(9):94702. PubMed ID: 16526867
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diffusion of molecules in the bulk of a low density amorphous ice from molecular dynamics simulations.
    Ghesquière P; Mineva T; Talbi D; Theulé P; Noble JA; Chiavassa T
    Phys Chem Chem Phys; 2015 May; 17(17):11455-68. PubMed ID: 25854329
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adsorption of Methylamine on Amorphous Ice under Interstellar Conditions. A Grand Canonical Monte Carlo Simulation Study.
    Horváth RA; Hantal G; Picaud S; Szőri M; Jedlovszky P
    J Phys Chem A; 2018 Apr; 122(13):3398-3412. PubMed ID: 29537265
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interstellar matrices: the chemical composition and evolution of interstellar ices as observed by ISO.
    d'Hendecourt L; Dartois E
    Spectrochim Acta A Mol Biomol Spectrosc; 2001 Mar; 57(4):669-84. PubMed ID: 11345246
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing the structure of cometary ice.
    Wilson MA; Pohorille A; Jenniskens P; Blake DF
    Orig Life Evol Biosph; 1995 Jun; 25(1-3):3-19. PubMed ID: 11536679
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of surface morphology on D2 desorption kinetics from amorphous solid water.
    Hornekaer L; Baurichter A; Petrunin VV; Luntz AC; Kay BD; Al-Halabi A
    J Chem Phys; 2005 Mar; 122(12):124701. PubMed ID: 15836403
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ice in space: surface science investigations of the thermal desorption of model interstellar ices on dust grain analogue surfaces.
    Burke DJ; Brown WA
    Phys Chem Chem Phys; 2010 Jun; 12(23):5947-69. PubMed ID: 20520900
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.