BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 29387854)

  • 1. Surface wipe and bulk sampling of household dust: arsenic exposure in Cornwall, UK.
    Middleton DRS; Watts MJ; Hamilton EM; Coe JD; Fletcher T; Crabbe H; Close R; Leonardi GS; Polya DA
    Environ Sci Process Impacts; 2018 Mar; 20(3):505-512. PubMed ID: 29387854
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arsenic in residential soil and household dust in Cornwall, south west England: potential human exposure and the influence of historical mining.
    Middleton DRS; Watts MJ; Beriro DJ; Hamilton EM; Leonardi GS; Fletcher T; Close RM; Polya DA
    Environ Sci Process Impacts; 2017 Apr; 19(4):517-527. PubMed ID: 28247892
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioaccessible arsenic in the home environment in southwest England.
    Rieuwerts JS; Searle P; Buck R
    Sci Total Environ; 2006 Dec; 371(1-3):89-98. PubMed ID: 17023026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of Children's Metal Exposure via Hand Wipe, Outdoor Soil and Indoor Dust and Their Associations with Blood Biomarkers.
    Wang B; Gao F; Li Y; Lin C; Cheng H; Duan X
    Int J Environ Res Public Health; 2022 Nov; 19(21):. PubMed ID: 36361494
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Environmental arsenic, cadmium and lead dust emissions from metal mine operations: Implications for environmental management, monitoring and human health.
    Taylor MP; Mould SA; Kristensen LJ; Rouillon M
    Environ Res; 2014 Nov; 135():296-303. PubMed ID: 25462679
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Associations between metals in residential environmental media and exposure biomarkers over time in infants living near a mining-impacted site.
    Zota AR; Riederer AM; Ettinger AS; Schaider LA; Shine JP; Amarasiriwardena CJ; Wright RO; Spengler JD
    J Expo Sci Environ Epidemiol; 2016 Sep; 26(5):510-9. PubMed ID: 26648247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial distributions of arsenic exposure and mining communities from NHEXAS Arizona. National Human Exposure Assessment Survey.
    O'Rourke MK; Rogan SP; Jin S; Robertson GL
    J Expo Anal Environ Epidemiol; 1999; 9(5):446-55. PubMed ID: 10554147
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Indoor metallic pollution and children exposure in a mining city.
    Barbieri E; Fontúrbel FE; Herbas C; Barbieri FL; Gardon J
    Sci Total Environ; 2014 Jul; 487():13-9. PubMed ID: 24762646
    [TBL] [Abstract][Full Text] [Related]  

  • 9. French children's exposure to metals via ingestion of indoor dust, outdoor playground dust and soil: contamination data.
    Glorennec P; Lucas JP; Mandin C; Le Bot B
    Environ Int; 2012 Sep; 45():129-34. PubMed ID: 22613504
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brominated and organophosphorus flame retardants in body wipes and house dust, and an estimation of house dust hand-loadings in Dutch toddlers.
    Sugeng EJ; Leonards PEG; van de Bor M
    Environ Res; 2017 Oct; 158():789-797. PubMed ID: 28756010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of four sampling methods for determining exposure of children to lead-contaminated household dust.
    Sterling DA; Roegner KC; Lewis RD; Luke DA; Wilder LC; Burchette SM
    Environ Res; 1999 Aug; 81(2):130-41. PubMed ID: 10433844
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Soil and indoor dust as environmental media of human exposure to As, Cd, Cu, and Pb near a copper smelter in central Chile.
    Berasaluce M; Mondaca P; Schuhmacher M; Bravo M; Sauvé S; Navarro-Villarroel C; Dovletyarova EA; Neaman A
    J Trace Elem Med Biol; 2019 Jul; 54():156-162. PubMed ID: 31109606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of ferromanganese alloy plants on household dust manganese levels: implications for childhood exposure.
    Lucas EL; Bertrand P; Guazzetti S; Donna F; Peli M; Jursa TP; Lucchini R; Smith DR
    Environ Res; 2015 Apr; 138():279-90. PubMed ID: 25747819
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The use of composite dust wipe samples as a means of assessing lead exposure.
    Friederich NJ; Bauer KM; Schultz BD; Holderman TS
    Am Ind Hyg Assoc J; 1999; 60(3):326-33. PubMed ID: 10386353
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immediate and one-year post-intervention effectiveness of Maryland's lead law treatments.
    Breysse J; Anderson J; Dixon S; Galke W; Wilson J
    Environ Res; 2007 Oct; 105(2):267-75. PubMed ID: 17559831
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pollutants in house dust as indicators of indoor contamination.
    Butte W; Heinzow B
    Rev Environ Contam Toxicol; 2002; 175():1-46. PubMed ID: 12206053
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extending wipe sampling methodologies to elements other than lead.
    McDonald LT; Rasmussen PE; Chénier M; Levesque C
    J Environ Monit; 2011 Feb; 13(2):377-83. PubMed ID: 21132198
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High lead exposures resulting from pottery production in a village in Michoacán State, Mexico.
    Hibbert R; Bai Z; Navia J; Kammen DM; Zhang J
    J Expo Anal Environ Epidemiol; 1999; 9(4):343-51. PubMed ID: 10489159
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of elementary schoolchildren's exposure to arsenic and lead.
    Chiang WF; Yang HJ; Lung SC; Huang S; Chiu CY; Liu IL; Tsai CL; Kuo CY
    J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2008; 26(3):237-55. PubMed ID: 18781537
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of wipe sampling materials for lead in surface dust.
    Millson M; Eller PM; Ashley K
    Am Ind Hyg Assoc J; 1994 Apr; 55(4):339-42. PubMed ID: 8209839
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.