These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 29387860)

  • 1. Microfluidic detection of movements of Escherichia coli for rapid antibiotic susceptibility testing.
    Kara V; Duan C; Gupta K; Kurosawa S; Stearns-Kurosawa DJ; Ekinci KL
    Lab Chip; 2018 Feb; 18(5):743-753. PubMed ID: 29387860
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A microfluidic microbial culture device for rapid determination of the minimum inhibitory concentration of antibiotics.
    Takagi R; Fukuda J; Nagata K; Yawata Y; Nomura N; Suzuki H
    Analyst; 2013 Feb; 138(4):1000-3. PubMed ID: 23289096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antimicrobial susceptibility testing using high surface-to-volume ratio microchannels.
    Chen CH; Lu Y; Sin ML; Mach KE; Zhang DD; Gau V; Liao JC; Wong PK
    Anal Chem; 2010 Feb; 82(3):1012-9. PubMed ID: 20055494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic cantilever detects bacteria and measures their susceptibility to antibiotics in small confined volumes.
    Etayash H; Khan MF; Kaur K; Thundat T
    Nat Commun; 2016 Oct; 7():12947. PubMed ID: 27698375
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stress-induced antibiotic susceptibility testing on a chip.
    Kalashnikov M; Campbell J; Lee JC; Sharon A; Sauer-Budge AF
    J Vis Exp; 2014 Jan; (83):e50828. PubMed ID: 24430495
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Thermoplastic Microsystem to Perform Antibiotic Susceptibility Testing by Monitoring Oxygen Consumption.
    Jusková P; Kling A; Schmitt S; Dittrich PS
    Methods Mol Biol; 2024; 2804():179-194. PubMed ID: 38753148
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A microfluidic platform for rapid, stress-induced antibiotic susceptibility testing of Staphylococcus aureus.
    Kalashnikov M; Lee JC; Campbell J; Sharon A; Sauer-Budge AF
    Lab Chip; 2012 Nov; 12(21):4523-32. PubMed ID: 22968495
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrafast Parallelized Microfluidic Platform for Antimicrobial Susceptibility Testing of Gram Positive and Negative Bacteria.
    Kang W; Sarkar S; Lin ZS; McKenney S; Konry T
    Anal Chem; 2019 May; 91(9):6242-6249. PubMed ID: 30938989
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A multiplexed microfluidic platform for rapid antibiotic susceptibility testing.
    Mohan R; Mukherjee A; Sevgen SE; Sanpitakseree C; Lee J; Schroeder CM; Kenis PJ
    Biosens Bioelectron; 2013 Nov; 49():118-25. PubMed ID: 23728197
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid cytometric antibiotic susceptibility testing utilizing adaptive multidimensional statistical metrics.
    Huang TH; Ning X; Wang X; Murthy N; Tzeng YL; Dickson RM
    Anal Chem; 2015 Feb; 87(3):1941-9. PubMed ID: 25540985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. All-electrical monitoring of bacterial antibiotic susceptibility in a microfluidic device.
    Yang Y; Gupta K; Ekinci KL
    Proc Natl Acad Sci U S A; 2020 May; 117(20):10639-10644. PubMed ID: 32350139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid antibiotic susceptibility testing in a microfluidic pH sensor.
    Tang Y; Zhen L; Liu J; Wu J
    Anal Chem; 2013 Mar; 85(5):2787-94. PubMed ID: 23360389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single cell antimicrobial susceptibility testing by confined microchannels and electrokinetic loading.
    Lu Y; Gao J; Zhang DD; Gau V; Liao JC; Wong PK
    Anal Chem; 2013 Apr; 85(8):3971-6. PubMed ID: 23445209
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid antibiotic susceptibility testing by tracking single cell growth in a microfluidic agarose channel system.
    Choi J; Jung YG; Kim J; Kim S; Jung Y; Na H; Kwon S
    Lab Chip; 2013 Jan; 13(2):280-7. PubMed ID: 23172338
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid and Accurate Antibiotic Susceptibility Determination of
    Zhang H; Li Y; Jiang Y; Lu X; Li R; Peng D; Wang Z; Liu Y
    Microbiol Spectr; 2021 Oct; 9(2):e0064821. PubMed ID: 34704829
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel microbead-based microfluidic device for rapid bacterial identification and antibiotic susceptibility testing.
    He J; Mu X; Guo Z; Hao H; Zhang C; Zhao Z; Wang Q
    Eur J Clin Microbiol Infect Dis; 2014 Dec; 33(12):2223-30. PubMed ID: 24996540
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A rapid method for post-antibiotic bacterial susceptibility testing.
    Heller AA; Spence DM
    PLoS One; 2019; 14(1):e0210534. PubMed ID: 30629681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antibiotic Susceptibility of Escherichia coli Cells during Early-Stage Biofilm Formation.
    Gu H; Lee SW; Carnicelli J; Jiang Z; Ren D
    J Bacteriol; 2019 Sep; 201(18):. PubMed ID: 31061169
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanomechanical sensor applied to blood culture pellets: a fast approach to determine the antibiotic susceptibility against agents of bloodstream infections.
    Stupar P; Opota O; Longo G; Prod'hom G; Dietler G; Greub G; Kasas S
    Clin Microbiol Infect; 2017 Jun; 23(6):400-405. PubMed ID: 28062319
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accelerating bacterial growth detection and antimicrobial susceptibility assessment in integrated picoliter droplet platform.
    Kaushik AM; Hsieh K; Chen L; Shin DJ; Liao JC; Wang TH
    Biosens Bioelectron; 2017 Nov; 97():260-266. PubMed ID: 28609716
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.