These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 29388073)

  • 1. Vertical modeling: analysis of competing risks data with a cure fraction.
    Nicolaie MA; Taylor JMG; Legrand C
    Lifetime Data Anal; 2019 Jan; 25(1):1-25. PubMed ID: 29388073
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Semiparametric accelerated failure time cure rate mixture models with competing risks.
    Choi S; Zhu L; Huang X
    Stat Med; 2018 Jan; 37(1):48-59. PubMed ID: 28983935
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vertical modelling: Analysis of competing risks data with missing causes of failure.
    Nicolaie MA; van Houwelingen HC; Putter H
    Stat Methods Med Res; 2015 Dec; 24(6):891-908. PubMed ID: 22179822
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct likelihood inference and sensitivity analysis for competing risks regression with missing causes of failure.
    Moreno-Betancur M; Rey G; Latouche A
    Biometrics; 2015 Jun; 71(2):498-507. PubMed ID: 25761785
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A flexible family of transformation cure rate models.
    Koutras MV; Milienos FS
    Stat Med; 2017 Jul; 36(16):2559-2575. PubMed ID: 28417477
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An EM-based semi-parametric mixture model approach to the regression analysis of competing-risks data.
    Ng SK; McLachlan GJ
    Stat Med; 2003 Apr; 22(7):1097-111. PubMed ID: 12652556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Maximum likelihood estimation of semiparametric mixture component models for competing risks data.
    Choi S; Huang X
    Biometrics; 2014 Sep; 70(3):588-98. PubMed ID: 24734912
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation method of the semiparametric mixture cure gamma frailty model.
    Peng Y; Zhang J
    Stat Med; 2008 Nov; 27(25):5177-94. PubMed ID: 18613271
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cure rate models for heterogeneous competing causes.
    Brandão M; Leão J; Gallardo DI; Bourguignon M
    Stat Methods Med Res; 2023 Sep; 32(9):1823-1841. PubMed ID: 37489264
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Competing risks analysis with missing cause-of-failure-penalized likelihood estimation of cause-specific Cox models.
    Lô SN; Ma J; Manuguerra M; Moreno-Betancur M; Scolyer RA; Thompson JF
    Stat Methods Med Res; 2022 May; 31(5):978-994. PubMed ID: 35037794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A semiparametric marginal mixture cure model for clustered survival data.
    Niu Y; Peng Y
    Stat Med; 2013 Jun; 32(14):2364-73. PubMed ID: 23203908
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cure fraction estimation from the mixture cure models for grouped survival data.
    Yu B; Tiwari RC; Cronin KA; Feuer EJ
    Stat Med; 2004 Jun; 23(11):1733-47. PubMed ID: 15160405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A SAS macro for parametric and semiparametric mixture cure models.
    Corbière F; Joly P
    Comput Methods Programs Biomed; 2007 Feb; 85(2):173-80. PubMed ID: 17157948
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Semiparametric analysis of mixture regression models with competing risks data.
    Lu W; Peng L
    Lifetime Data Anal; 2008 Sep; 14(3):231-52. PubMed ID: 18193354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modified score function for monotone likelihood in the semiparametric mixture cure model.
    Almeida FM; Colosimo EA; Mayrink VD
    Biom J; 2022 Mar; 64(3):635-654. PubMed ID: 34845768
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Frailty modelling approaches for semi-competing risks data.
    Ha ID; Xiang L; Peng M; Jeong JH; Lee Y
    Lifetime Data Anal; 2020 Jan; 26(1):109-133. PubMed ID: 30734137
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hierarchical likelihood inference on clustered competing risks data.
    Christian NJ; Ha ID; Jeong JH
    Stat Med; 2016 Jan; 35(2):251-67. PubMed ID: 26278918
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The single-index/Cox mixture cure model.
    Amico M; Van Keilegom I; Legrand C
    Biometrics; 2019 Jun; 75(2):452-462. PubMed ID: 30430553
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Parametric estimation of association in bivariate failure-time data subject to competing risks: sensitivity to underlying assumptions.
    Kim J; Bandeen-Roche K
    Lifetime Data Anal; 2019 Apr; 25(2):259-279. PubMed ID: 30076511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A simplified stochastic EM algorithm for cure rate model with negative binomial competing risks: An application to breast cancer data.
    Pal S
    Stat Med; 2021 Dec; 40(28):6387-6409. PubMed ID: 34783093
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.