BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 29388282)

  • 1. Protein-protein interactions controlling interfacial aggregation of rhIL-1ra are not described by simple colloid models.
    Sorret LL; DeWinter MA; Schwartz DK; Randolph TW
    Protein Sci; 2018 Jul; 27(7):1191-1204. PubMed ID: 29388282
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Steric Repulsion Forces Contributed by PEGylation of Interleukin-1 Receptor Antagonist Reduce Gelation and Aggregation at the Silicone Oil-Water Interface.
    Sorret LL; Monticello CR; DeWinter MA; Schwartz DK; Randolph TW
    J Pharm Sci; 2019 Jan; 108(1):162-172. PubMed ID: 30395835
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gelation of a monoclonal antibody at the silicone oil-water interface and subsequent rupture of the interfacial gel results in aggregation and particle formation.
    Mehta SB; Lewus R; Bee JS; Randolph TW; Carpenter JF
    J Pharm Sci; 2015 Apr; 104(4):1282-90. PubMed ID: 25639229
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Colloidal Instability Fosters Agglomeration of Subvisible Particles Created by Rupture of Gels of a Monoclonal Antibody Formed at Silicone Oil-Water Interfaces.
    Mehta SB; Carpenter JF; Randolph TW
    J Pharm Sci; 2016 Aug; 105(8):2338-48. PubMed ID: 27422087
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High concentration formulations of recombinant human interleukin-1 receptor antagonist: II. Aggregation kinetics.
    Alford JR; Kendrick BS; Carpenter JF; Randolph TW
    J Pharm Sci; 2008 Aug; 97(8):3005-21. PubMed ID: 17924426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Particle Formation and Aggregation of a Therapeutic Protein in Nanobubble Suspensions.
    Snell JR; Zhou C; Carpenter JF; Randolph TW
    J Pharm Sci; 2016 Oct; 105(10):3057-3063. PubMed ID: 27488901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein aggregation and particle formation in prefilled glass syringes.
    Gerhardt A; Mcgraw NR; Schwartz DK; Bee JS; Carpenter JF; Randolph TW
    J Pharm Sci; 2014 Jun; 103(6):1601-12. PubMed ID: 24729310
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature dependence of benzyl alcohol- and 8-anilinonaphthalene-1-sulfonate-induced aggregation of recombinant human interleukin-1 receptor antagonist.
    Roy S; Katayama D; Dong A; Kerwin BA; Randolph TW; Carpenter JF
    Biochemistry; 2006 Mar; 45(12):3898-911. PubMed ID: 16548517
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of benzyl alcohol on recombinant human interleukin-1 receptor antagonist structure and hydrogen-deuterium exchange.
    Alford JR; Fowler AC; Wuttke DS; Kerwin BA; Latypov RF; Carpenter JF; Randolph TW
    J Pharm Sci; 2011 Oct; 100(10):4215-24. PubMed ID: 21557223
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of oil type and WPI/Tween 80 ratio at the oil-water interface: Adsorption, interfacial rheology and emulsion features.
    Gomes A; Costa ALR; Cunha RL
    Colloids Surf B Biointerfaces; 2018 Apr; 164():272-280. PubMed ID: 29413606
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of benzyl alcohol on aggregation of recombinant human interleukin-1-receptor antagonist in reconstituted lyophilized formulations.
    Roy S; Jung R; Kerwin BA; Randolph TW; Carpenter JF
    J Pharm Sci; 2005 Feb; 94(2):382-96. PubMed ID: 15614819
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adsorption and Aggregation of Monoclonal Antibodies at Silicone Oil-Water Interfaces.
    Kannan A; Shieh IC; Negulescu PG; Chandran Suja V; Fuller GG
    Mol Pharm; 2021 Apr; 18(4):1656-1665. PubMed ID: 33656340
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Oil Hydrophobicity on the Adsorption and Rheology of β-Lactoglobulin at Oil-Water Interfaces.
    Bergfreund J; Bertsch P; Kuster S; Fischer P
    Langmuir; 2018 Apr; 34(16):4929-4936. PubMed ID: 29616820
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High concentration formulations of recombinant human interleukin-1 receptor antagonist: I. Physical characterization.
    Alford JR; Kwok SC; Roberts JN; Wuttke DS; Kendrick BS; Carpenter JF; Randolph TW
    J Pharm Sci; 2008 Aug; 97(8):3035-50. PubMed ID: 17973297
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of ionic strength on the interfacial viscoelasticity and stability of silk fibroin at the oil/water interface.
    Tang X; Qiao X; Miller R; Sun K
    J Sci Food Agric; 2016 Dec; 96(15):4918-4928. PubMed ID: 27256721
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adsorption and dilatational rheology of heat-treated soy protein at the oil-water interface: relationship to structural properties.
    Wang JM; Xia N; Yang XQ; Yin SW; Qi JR; He XT; Yuan DB; Wang LJ
    J Agric Food Chem; 2012 Mar; 60(12):3302-10. PubMed ID: 22372478
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic and viscoelastic interfacial behavior of β-lactoglobulin microgels of varying sizes at fluid interfaces.
    Murphy RW; Farkas BE; Jones OG
    J Colloid Interface Sci; 2016 Mar; 466():12-9. PubMed ID: 26701187
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tensiometry and dilational rheology of mixed β-lactoglobulin/ionic surfactant adsorption layers at water/air and water/hexane interfaces.
    Dan A; Gochev G; Miller R
    J Colloid Interface Sci; 2015 Jul; 449():383-91. PubMed ID: 25666640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polyelectrolyte/surfactant mixtures in the bulk and at water/oil interfaces.
    Aidarova S; Sharipova A; Krägel J; Miller R
    Adv Colloid Interface Sci; 2014 Mar; 205():87-93. PubMed ID: 24268973
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mixed layers of sodium caseinate + dextran sulfate: influence of order of addition to oil-water interface.
    Jourdain LS; Schmitt C; Leser ME; Murray BS; Dickinson E
    Langmuir; 2009 Sep; 25(17):10026-37. PubMed ID: 19459686
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.