These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 29388421)

  • 1. Electrorheological Fluids with High Shear Stress Based on Wrinkly Tin Titanyl Oxalate.
    Wu J; Zhang L; Xin X; Zhang Y; Wang H; Sun A; Cheng Y; Chen X; Xu G
    ACS Appl Mater Interfaces; 2018 Feb; 10(7):6785-6792. PubMed ID: 29388421
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrorheological suspensions of laponite in oil: rheometry studies.
    Parmar KP; Méheust Y; Schjelderupsen B; Fossum JO
    Langmuir; 2008 Mar; 24(5):1814-22. PubMed ID: 18215081
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation and electrorheological property of rare earth modified amorphous BaxSr1-xTiO3 gel electrorheological fluid.
    Wu Q; Zhao By; Chen le S; Fang C; Hu Ka
    J Colloid Interface Sci; 2005 Feb; 282(2):493-8. PubMed ID: 15589557
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced response of titanium doped iron(ii) oxalate under electric field.
    Li C; Wei H; Hu X; Chen Z; Xie X; Chen G; Liu A; Huang Y; Wen W
    RSC Adv; 2022 Nov; 12(49):31959-31965. PubMed ID: 36380922
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrorheological fluids based on glycerol-activated titania gel particles and silicone oil with high yield strength.
    Yin JB; Zhao XP
    J Colloid Interface Sci; 2003 Jan; 257(2):228-36. PubMed ID: 16256474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Study on Enhanced Electrorheological Performance of Plate-like Materials via Percolation Gel-like Effect.
    Jekal S; Sa M; Chu YR; Kim CG; Noh J; Kim J; Kim HY; Oh WC; Otgonbayar Z; Yoon CM
    Gels; 2023 Nov; 9(11):. PubMed ID: 37998981
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Static shear modulus of electrorheological fluids.
    Shi L; Tam WY; Huang X; Sheng P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 May; 73(5 Pt 1):051501. PubMed ID: 16802937
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shear-enhanced yield stress in electrorheological fluids.
    Lau KC; Shi L; Tam WY; Sheng P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 1):052502. PubMed ID: 12786202
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The surfactant effect on electrorheological performance and colloidal stability.
    Xu H; Wu J; Hong Y; Wen W
    Soft Matter; 2021 Aug; 17(30):7158-7167. PubMed ID: 34259280
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transient response of an electrorheological fluid under square-wave electric field excitation.
    Tian Y; Li C; Zhang M; Meng Y; Wen S
    J Colloid Interface Sci; 2005 Aug; 288(1):290-7. PubMed ID: 15927589
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electro-elastoviscous response of polyaniline functionalized nano-porous zeolite based colloidal dispersions.
    Chattopadhyay A; Rani P; Srivastava R; Dhar P
    J Colloid Interface Sci; 2018 Jun; 519():242-254. PubMed ID: 29501996
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure parameter of electrorheological fluids in shear flow.
    Jiang J; Tian Y; Meng Y
    Langmuir; 2011 May; 27(10):5814-23. PubMed ID: 21488694
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new approach of enhancing the shear stress of electrorheological fluids of montmorillonite nanocomposite by emulsion intercalation of poly-N-methaniline.
    Lu J; Zhao X
    J Colloid Interface Sci; 2004 May; 273(2):651-7. PubMed ID: 15082406
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Performance tuning of giant electrorheological fluids by interfacial tailoring.
    Xu Z; Hong Y; Zhang M; Wu J; Wen W
    Soft Matter; 2018 Feb; 14(8):1427-1433. PubMed ID: 29389003
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reversible shear thickening at low shear rates of electrorheological fluids under electric fields.
    Tian Y; Zhang M; Jiang J; Pesika N; Zeng H; Israelachvili J; Meng Y; Wen S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jan; 83(1 Pt 1):011401. PubMed ID: 21405692
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrorheological fluid under elongation, compression, and shearing.
    Tian Y; Meng Y; Mao H; Wen S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Mar; 65(3 Pt 1):031507. PubMed ID: 11909066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of particle size on shear behavior of amine-group-immobilized polyacrylonitrile dispersed suspension under electric field.
    Ko YG; Choi US; Chun YJ
    J Colloid Interface Sci; 2009 Jul; 335(2):183-8. PubMed ID: 19409572
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large electrorheological phenomena in graphene nano-gels.
    Dhar P; Katiyar A; Pattamatta A; Das SK
    Nanotechnology; 2017 Jan; 28(3):035702. PubMed ID: 27928997
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quasi-static electrorheological properties of hematite/silicone oil suspensions under DC electric fields.
    Espin MJ; Delgado AV; Płocharski J
    Langmuir; 2005 May; 21(11):4896-903. PubMed ID: 15896029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Smart and Functional Conducting Polymers: Application to Electrorheological Fluids.
    Lu Q; Han WJ; Choi HJ
    Molecules; 2018 Nov; 23(11):. PubMed ID: 30400169
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.