These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 29388421)

  • 21. Giant electrorheological effect: a microscopic mechanism.
    Chen S; Huang X; van der Vegt NF; Wen W; Sheng P
    Phys Rev Lett; 2010 Jul; 105(4):046001. PubMed ID: 20867864
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Recent development of electro-responsive smart electrorheological fluids.
    Dong YZ; Seo Y; Choi HJ
    Soft Matter; 2019 Apr; 15(17):3473-3486. PubMed ID: 30968927
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microfibrillated Cellulose Suspension and Its Electrorheology.
    Choi K; Nam JD; Kwon SH; Choi HJ; Islam MS; Kao N
    Polymers (Basel); 2019 Dec; 11(12):. PubMed ID: 31861094
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Generalized yield stress equation for electrorheological fluids.
    Zhang K; Liu YD; Jhon MS; Choi HJ
    J Colloid Interface Sci; 2013 Nov; 409():259-63. PubMed ID: 23993784
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Correlation of the Dielectric Properties of Dispersed Particles with the Electrorheological Effect.
    Hao T; Xu Z; Xu Y
    J Colloid Interface Sci; 1997 Jun; 190(2):334-40. PubMed ID: 9241175
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microstructure-Confined Mechanical and Electric Properties of the Electrorheological Fluids under the Oscillatory Mechanical Field.
    Hao T; Xu Y
    J Colloid Interface Sci; 1997 Jan; 185(2):324-31. PubMed ID: 9028885
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development of Novel Colorful Electrorheological Fluids.
    Jekal S; Kim J; Lu Q; Kim DH; Noh J; Kim HY; Kim MJ; Kim MS; Oh WC; Choi HJ; Yoon CM
    Nanomaterials (Basel); 2022 Sep; 12(18):. PubMed ID: 36144903
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of liquid phase on nanoparticle-based giant electrorheological fluid.
    Gong X; Wu J; Huang X; Wen W; Sheng P
    Nanotechnology; 2008 Apr; 19(16):165602. PubMed ID: 21825646
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Silicone-grafted carbonaceous nanotubes with enhanced dispersion stability and electrorheological efficiency.
    Yin J; Wang X; Zhao X
    Nanotechnology; 2015 Feb; 26(6):065704. PubMed ID: 25597819
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structure of electrorheological fluids under an electric field and a shear flow: experiment and computer simulation.
    Cao JG; Huang JP; Zhou LW
    J Phys Chem B; 2006 Jun; 110(24):11635-9. PubMed ID: 16800457
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modeling and analysis of electrorheological suspensions in shear flow.
    Seo YP; Seo Y
    Langmuir; 2012 Feb; 28(6):3077-84. PubMed ID: 22233263
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Polyaniline Coated Core-Shell Typed Stimuli-Responsive Microspheres and Their Electrorheology.
    Dong YZ; Han WJ; Choi HJ
    Polymers (Basel); 2018 Mar; 10(3):. PubMed ID: 30966334
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sedimentation behaviour in electrorheological fluids based on suspensions of zeolite particles in silicone oil.
    Prekas K; Shah T; Soin N; Rangoussi M; Vassiliadis S; Siores E
    J Colloid Interface Sci; 2013 Jul; 401():58-64. PubMed ID: 23623409
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dynamic effects on nonlinear alternating current responses in electrorheological fluids.
    Tian WJ; Huang JP; Yu KW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Mar; 73(3 Pt 1):031408. PubMed ID: 16605525
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electrorheological behavior of iron(ii) oxalate micro-rods.
    Kutalkova E; Plachy T; Osicka J; Cvek M; Mrlik M; Sedlacik M
    RSC Adv; 2018 Jul; 8(44):24773-24779. PubMed ID: 35542126
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Efficient and stable electrorheological fluids based on chestnut-like cobalt hydroxide coupled with surface-functionalized carbon dots.
    Liang Y; Liu Y; Zhou Y; Shi Q; Zhang M; Li Y; Wen W; Feng L; Wu J
    Soft Matter; 2022 May; 18(20):3845-3855. PubMed ID: 35416233
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The mixing effect of amine and carboxyl groups on electrorheological properties and its analysis by in situ FT-IR under an electric field.
    Ko YG; Lee HJ; Park YS; Woo JW; Choi US
    Phys Chem Chem Phys; 2013 Oct; 15(39):16527-32. PubMed ID: 23945542
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Investigation of electrorheological properties of biodegradable modified cellulose/corn oil suspensions.
    Tilki T; Yavuz M; Karabacak C; Cabuk M; Ulutürk M
    Carbohydr Res; 2010 Mar; 345(5):672-9. PubMed ID: 20116050
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthesis of kenaf cellulose carbamate and its smart electric stimuli-response.
    Gan S; Piao SH; Choi HJ; Zakaria S; Chia CH
    Carbohydr Polym; 2016 Feb; 137():693-700. PubMed ID: 26686181
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cellulose-Based Smart Fluids under Applied Electric Fields.
    Choi K; Gao CY; Nam JD; Choi HJ
    Materials (Basel); 2017 Sep; 10(9):. PubMed ID: 28891966
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.