BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 29388428)

  • 1. Improving Unipolar Resistive Switching Uniformity with Cone-Shaped Conducting Filaments and Its Logic-In-Memory Application.
    Gao S; Liu G; Chen Q; Xue W; Yang H; Shang J; Chen B; Zeng F; Song C; Pan F; Li RW
    ACS Appl Mater Interfaces; 2018 Feb; 10(7):6453-6462. PubMed ID: 29388428
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interface-modified unipolar resistive random access memory (RRAM) structure for low-power application.
    Ryoo KC; Oh JH; Jung S; Jeong H; Park BG
    J Nanosci Nanotechnol; 2012 Jul; 12(7):5263-9. PubMed ID: 22966555
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synergies of Electrochemical Metallization and Valance Change in All-Inorganic Perovskite Quantum Dots for Resistive Switching.
    Wang Y; Lv Z; Liao Q; Shan H; Chen J; Zhou Y; Zhou L; Chen X; Roy VAL; Wang Z; Xu Z; Zeng YJ; Han ST
    Adv Mater; 2018 Jul; 30(28):e1800327. PubMed ID: 29782667
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonvolatile reconfigurable sequential logic in a HfO
    Zhou YX; Li Y; Su YT; Wang ZR; Shih LY; Chang TC; Chang KC; Long SB; Sze SM; Miao XS
    Nanoscale; 2017 May; 9(20):6649-6657. PubMed ID: 28261713
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Guiding the Growth of a Conductive Filament by Nanoindentation To Improve Resistive Switching.
    Sun Y; Song C; Yin J; Chen X; Wan Q; Zeng F; Pan F
    ACS Appl Mater Interfaces; 2017 Oct; 9(39):34064-34070. PubMed ID: 28901743
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interface Engineering with MoS
    Wang XF; Tian H; Zhao HM; Zhang TY; Mao WQ; Qiao YC; Pang Y; Li YX; Yang Y; Ren TL
    Small; 2018 Jan; 14(2):. PubMed ID: 29205799
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atomic Layer-Deposited HfAlOx-Based RRAM with Low Operating Voltage for Computing In-Memory Applications.
    He ZY; Wang TY; Chen L; Zhu H; Sun QQ; Ding SJ; Zhang DW
    Nanoscale Res Lett; 2019 Feb; 14(1):51. PubMed ID: 30734146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-performance resistive random access memory using two-dimensional electron gas electrode and its switching mechanism analysis.
    Kim J; Kwon O; Lee K; Han G; Hwang H
    Nanotechnology; 2023 Oct; 35(2):. PubMed ID: 37827148
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Demonstration of Logic Operations in High-Performance RRAM Crossbar Array Fabricated by Atomic Layer Deposition Technique.
    Han R; Huang P; Zhao Y; Chen Z; Liu L; Liu X; Kang J
    Nanoscale Res Lett; 2017 Dec; 12(1):37. PubMed ID: 28091948
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resistive Random Access Memory (RRAM): an Overview of Materials, Switching Mechanism, Performance, Multilevel Cell (mlc) Storage, Modeling, and Applications.
    Zahoor F; Azni Zulkifli TZ; Khanday FA
    Nanoscale Res Lett; 2020 Apr; 15(1):90. PubMed ID: 32323059
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graphene Oxide-Based Memristive Logic-in-Memory Circuit Enabling Normally-Off Computing.
    Kim Y; Jeon SB; Jang BC
    Nanomaterials (Basel); 2023 Feb; 13(4):. PubMed ID: 36839078
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling of Self-Aligned Selector Based on Ultra-Thin Metal Oxide for Resistive Random-Access Memory (RRAM) Crossbar Arrays.
    Fedotov M; Korotitsky V; Koveshnikov S
    Nanomaterials (Basel); 2024 Apr; 14(8):. PubMed ID: 38668162
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atomic Layer Deposited Oxide-Based Nanocomposite Structures with Embedded CoPt
    Wang LG; Cao ZY; Qian X; Zhu L; Cui DP; Li AD; Wu D
    ACS Appl Mater Interfaces; 2017 Feb; 9(7):6634-6643. PubMed ID: 28139921
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Realization of Self-Compliance Resistive Switching Memory via Tailoring Interfacial Oxygen.
    Zhang H; Ju X; Zhou Y; Gu C; Pan J; Ang DS
    ACS Appl Mater Interfaces; 2019 Nov; 11(44):41490-41496. PubMed ID: 31597415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controllable Organic Resistive Switching Achieved by One-Step Integration of Cone-Shaped Contact.
    Ling H; Yi M; Nagai M; Xie L; Wang L; Hu B; Huang W
    Adv Mater; 2017 Sep; 29(35):. PubMed ID: 28707713
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High uniformity and improved nonlinearity by embedding nanocrystals in selector-less resistive random access memory.
    Banerjee W; Lu N; Li L; Sun P; Liu Q; Lv H; Long S; Liu M
    Nanoscale; 2014 Dec; ():. PubMed ID: 25491764
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Beyond von Neumann--logic operations in passive crossbar arrays alongside memory operations.
    Linn E; Rosezin R; Tappertzhofen S; Böttger U; Waser R
    Nanotechnology; 2012 Aug; 23(30):305205. PubMed ID: 22782173
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of Electrodeposited Bilayer Structures for Reliable Resistive Switching with Self-Compliance.
    Kim MK; Lee JS
    ACS Appl Mater Interfaces; 2016 Dec; 8(48):32918-32924. PubMed ID: 27934194
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compositional Effects of Hybrid MoS
    R M; Raina G
    Nanotechnology; 2024 Jul; ():. PubMed ID: 38955133
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unraveling the Role of Polydopamines in Resistive Switching in Al/Polydopamine/Al Structure for Organic Resistive Random-Access Memory.
    Yun J; Kim D
    Polymers (Basel); 2022 Jul; 14(15):. PubMed ID: 35893959
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.