These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 29388466)

  • 1. Reactive oxygen species induced Ca
    Suresh K; Servinsky L; Jiang H; Bigham Z; Yun X; Kliment C; Huetsch J; Damarla M; Shimoda LA
    Am J Physiol Lung Cell Mol Physiol; 2018 May; 314(5):L893-L907. PubMed ID: 29388466
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of mitochondrial fragmentation in microvascular endothelial cells isolated from the SU5416/hypoxia model of pulmonary arterial hypertension.
    Suresh K; Servinsky L; Jiang H; Bigham Z; Zaldumbide J; Huetsch JC; Kliment C; Acoba MG; Kirsch BJ; Claypool SM; Le A; Damarla M; Shimoda LA
    Am J Physiol Lung Cell Mol Physiol; 2019 Nov; 317(5):L639-L652. PubMed ID: 31461316
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fatty acid metabolism promotes TRPV4 activity in lung microvascular endothelial cells in pulmonary arterial hypertension.
    Philip N; Yun X; Pi H; Murray S; Hill Z; Fonticella J; Perez P; Zhang C; Pathmasiri W; Sumner S; Servinsky L; Jiang H; Huetsch JC; Oldham WM; Visovatti S; Leary PJ; Gharib SA; Brittain E; Simpson CE; Le A; Shimoda LA; Suresh K
    Am J Physiol Lung Cell Mol Physiol; 2024 Mar; 326(3):L252-L265. PubMed ID: 38226418
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Upregulation of osmo-mechanosensitive TRPV4 channel facilitates chronic hypoxia-induced myogenic tone and pulmonary hypertension.
    Yang XR; Lin AH; Hughes JM; Flavahan NA; Cao YN; Liedtke W; Sham JS
    Am J Physiol Lung Cell Mol Physiol; 2012 Mar; 302(6):L555-68. PubMed ID: 22207590
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Endothelial Heterogeneity in the Response to Autophagy Drives Small Vessel Muscularization in Pulmonary Hypertension.
    Zhang Q; Yaoita N; Tabuchi A; Liu S; Chen SH; Li Q; Hegemann N; Li C; Rodor J; Timm S; Laban H; Finkel T; Stevens T; Alvarez DF; Erfinanda L; de Perrot M; Kucherenko MM; Knosalla C; Ochs M; Dimmeler S; Korff T; Verma S; Baker AH; Kuebler WM
    Circulation; 2024 Aug; 150(6):466-487. PubMed ID: 38873770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Loss of lung microvascular endothelial Piezo2 expression impairs NO synthesis, induces EndMT, and is associated with pulmonary hypertension.
    Tian S; Cai Z; Sen P; van Uden D; van de Kamp E; Thuillet R; Tu L; Guignabert C; Boomars K; Van der Heiden K; Brandt MM; Merkus D
    Am J Physiol Heart Circ Physiol; 2022 Nov; 323(5):H958-H974. PubMed ID: 36149769
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Upregulation of Aquaporin 1 Mediates Increased Migration and Proliferation in Pulmonary Vascular Cells From the Rat SU5416/Hypoxia Model of Pulmonary Hypertension.
    Yun X; Philip NM; Jiang H; Smith Z; Huetsch JC; Damarla M; Suresh K; Shimoda LA
    Front Physiol; 2021; 12():763444. PubMed ID: 34975522
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogen peroxide-induced calcium influx in lung microvascular endothelial cells involves TRPV4.
    Suresh K; Servinsky L; Reyes J; Baksh S; Undem C; Caterina M; Pearse DB; Shimoda LA
    Am J Physiol Lung Cell Mol Physiol; 2015 Dec; 309(12):L1467-77. PubMed ID: 26453519
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fasudil Dichloroacetate Alleviates SU5416/Hypoxia-Induced Pulmonary Arterial Hypertension by Ameliorating Dysfunction of Pulmonary Arterial Smooth Muscle Cells.
    Liu P; Huang W; Ding Y; Wu J; Liang Z; Huang Z; Xie W; Kong H
    Drug Des Devel Ther; 2021; 15():1653-1666. PubMed ID: 33935492
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Implication of the ryanodine receptor in TRPV4-induced calcium response in pulmonary arterial smooth muscle cells from normoxic and chronically hypoxic rats.
    Dahan D; Ducret T; Quignard JF; Marthan R; Savineau JP; Estève E
    Am J Physiol Lung Cell Mol Physiol; 2012 Nov; 303(9):L824-33. PubMed ID: 22962011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nintedanib improves cardiac fibrosis but leaves pulmonary vascular remodelling unaltered in experimental pulmonary hypertension.
    Rol N; de Raaf MA; Sun XQ; Kuiper VP; da Silva Gonçalves Bos D; Happé C; Kurakula K; Dickhoff C; Thuillet R; Tu L; Guignabert C; Schalij I; Lodder K; Pan X; Herrmann FE; van Nieuw Amerongen GP; Koolwijk P; Vonk-Noordegraaf A; de Man FS; Wollin L; Goumans MJ; Szulcek R; Bogaard HJ
    Cardiovasc Res; 2019 Feb; 115(2):432-439. PubMed ID: 30032282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Na+/H+ exchanger contributes to increased smooth muscle proliferation and migration in a rat model of pulmonary arterial hypertension.
    Huetsch JC; Jiang H; Larrain C; Shimoda LA
    Physiol Rep; 2016 Mar; 4(5):. PubMed ID: 26997630
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neutralization of CXCL12 attenuates established pulmonary hypertension in rats.
    Bordenave J; Thuillet R; Tu L; Phan C; Cumont A; Marsol C; Huertas A; Savale L; Hibert M; Galzi JL; Bonnet D; Humbert M; Frossard N; Guignabert C
    Cardiovasc Res; 2020 Mar; 116(3):686-697. PubMed ID: 31173066
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Paeoniflorin Ameliorates Chronic Hypoxia/SU5416-Induced Pulmonary Arterial Hypertension by Inhibiting Endothelial-to-Mesenchymal Transition.
    Yu M; Peng L; Liu P; Yang M; Zhou H; Ding Y; Wang J; Huang W; Tan Q; Wang Y; Xie W; Kong H; Wang H
    Drug Des Devel Ther; 2020; 14():1191-1202. PubMed ID: 32256050
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contribution of reactive oxygen species to the pathogenesis of pulmonary arterial hypertension.
    Jernigan NL; Naik JS; Weise-Cross L; Detweiler ND; Herbert LM; Yellowhair TR; Resta TC
    PLoS One; 2017; 12(6):e0180455. PubMed ID: 28666030
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of hypoxia on TRPV1 and TRPV4 channels in rat pulmonary arterial smooth muscle cells.
    Parpaite T; Cardouat G; Mauroux M; Gillibert-Duplantier J; Robillard P; Quignard JF; Marthan R; Savineau JP; Ducret T
    Pflugers Arch; 2016 Jan; 468(1):111-130. PubMed ID: 25799977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of IL-33 receptor (ST2) deletion in diaphragm contractile and mitochondrial function in the Sugen5416/hypoxia model of pulmonary hypertension.
    Cannon DT; Nogueira L; Gutierrez-Gonzalez AK; Gilmore NK; Bigby TD; Breen EC
    Respir Physiol Neurobiol; 2022 Jan; 295():103783. PubMed ID: 34508866
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Delayed Microvascular Shear Adaptation in Pulmonary Arterial Hypertension. Role of Platelet Endothelial Cell Adhesion Molecule-1 Cleavage.
    Szulcek R; Happé CM; Rol N; Fontijn RD; Dickhoff C; Hartemink KJ; Grünberg K; Tu L; Timens W; Nossent GD; Paul MA; Leyen TA; Horrevoets AJ; de Man FS; Guignabert C; Yu PB; Vonk-Noordegraaf A; van Nieuw Amerongen GP; Bogaard HJ
    Am J Respir Crit Care Med; 2016 Jun; 193(12):1410-20. PubMed ID: 26760925
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Endothelial hyperpermeability in severe pulmonary arterial hypertension: role of store-operated calcium entry.
    Zhou C; Townsley MI; Alexeyev M; Voelkel NF; Stevens T
    Am J Physiol Lung Cell Mol Physiol; 2016 Sep; 311(3):L560-9. PubMed ID: 27422996
    [TBL] [Abstract][Full Text] [Related]  

  • 20. IL-33/ST2 receptor-dependent signaling in the development of pulmonary hypertension in Sugen/hypoxia mice.
    Indralingam CS; Gutierrez-Gonzalez AK; Johns SC; Tsui T; Cannon DT; Fuster MM; Bigby TD; Jennings PA; Breen EC
    Physiol Rep; 2022 Feb; 10(3):e15185. PubMed ID: 35150208
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.