BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

340 related articles for article (PubMed ID: 29388468)

  • 1. PLCγ1-PKCε-IP
    Yadav VR; Song T; Mei L; Joseph L; Zheng YM; Wang YX
    Am J Physiol Lung Cell Mol Physiol; 2018 May; 314(5):L724-L735. PubMed ID: 29388468
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Important role of PLC-γ1 in hypoxic increase in intracellular calcium in pulmonary arterial smooth muscle cells.
    Yadav VR; Song T; Joseph L; Mei L; Zheng YM; Wang YX
    Am J Physiol Lung Cell Mol Physiol; 2013 Feb; 304(3):L143-51. PubMed ID: 23204067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrial ROS-PKCepsilon signaling axis is uniquely involved in hypoxic increase in [Ca2+]i in pulmonary artery smooth muscle cells.
    Rathore R; Zheng YM; Li XQ; Wang QS; Liu QH; Ginnan R; Singer HA; Ho YS; Wang YX
    Biochem Biophys Res Commun; 2006 Dec; 351(3):784-90. PubMed ID: 17087917
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Type 2 inositol 1,4,5-trisphosphate receptor inhibits the progression of pulmonary arterial hypertension via calcium signaling and apoptosis.
    Shibata A; Uchida K; Kodo K; Miyauchi T; Mikoshiba K; Takahashi T; Yamagishi H
    Heart Vessels; 2019 Apr; 34(4):724-734. PubMed ID: 30460575
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hypoxia activates NADPH oxidase to increase [ROS]i and [Ca2+]i through the mitochondrial ROS-PKCepsilon signaling axis in pulmonary artery smooth muscle cells.
    Rathore R; Zheng YM; Niu CF; Liu QH; Korde A; Ho YS; Wang YX
    Free Radic Biol Med; 2008 Nov; 45(9):1223-31. PubMed ID: 18638544
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Important Role of Sarcoplasmic Reticulum Ca
    Yang Z; Song T; Truong L; Reyes-García J; Wang L; Zheng YM; Wang YX
    Antioxid Redox Signal; 2020 Mar; 32(7):447-462. PubMed ID: 31456413
    [No Abstract]   [Full Text] [Related]  

  • 7. Endoplasmic reticulum Ca2+ release causes Rieske iron-sulfur protein-mediated mitochondrial ROS generation in pulmonary artery smooth muscle cells.
    Dong D; Hao Q; Zhang P; Wang T; Han F; Liang X; Fei Z
    Biosci Rep; 2019 Dec; 39(12):. PubMed ID: 31710081
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ROS-dependent signaling mechanisms for hypoxic Ca(2+) responses in pulmonary artery myocytes.
    Wang YX; Zheng YM
    Antioxid Redox Signal; 2010 Mar; 12(5):611-23. PubMed ID: 19764882
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increases in mitochondrial reactive oxygen species trigger hypoxia-induced calcium responses in pulmonary artery smooth muscle cells.
    Waypa GB; Guzy R; Mungai PT; Mack MM; Marks JD; Roe MW; Schumacker PT
    Circ Res; 2006 Oct; 99(9):970-8. PubMed ID: 17008601
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cross Talk Between Mitochondrial Reactive Oxygen Species and Sarcoplasmic Reticulum Calcium in Pulmonary Arterial Smooth Muscle Cells.
    Song T; Zheng YM; Wang YX
    Adv Exp Med Biol; 2017; 967():289-298. PubMed ID: 29047093
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ndufs2, a Core Subunit of Mitochondrial Complex I, Is Essential for Acute Oxygen-Sensing and Hypoxic Pulmonary Vasoconstriction.
    Dunham-Snary KJ; Wu D; Potus F; Sykes EA; Mewburn JD; Charles RL; Eaton P; Sultanian RA; Archer SL
    Circ Res; 2019 Jun; 124(12):1727-1746. PubMed ID: 30922174
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Notch Activation of Ca(2+) Signaling in the Development of Hypoxic Pulmonary Vasoconstriction and Pulmonary Hypertension.
    Smith KA; Voiriot G; Tang H; Fraidenburg DR; Song S; Yamamura H; Yamamura A; Guo Q; Wan J; Pohl NM; Tauseef M; Bodmer R; Ocorr K; Thistlethwaite PA; Haddad GG; Powell FL; Makino A; Mehta D; Yuan JX
    Am J Respir Cell Mol Biol; 2015 Sep; 53(3):355-67. PubMed ID: 25569851
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxygen sensing and signal transduction in hypoxic pulmonary vasoconstriction.
    Sommer N; Strielkov I; Pak O; Weissmann N
    Eur Respir J; 2016 Jan; 47(1):288-303. PubMed ID: 26493804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CFTR and sphingolipids mediate hypoxic pulmonary vasoconstriction.
    Tabeling C; Yu H; Wang L; Ranke H; Goldenberg NM; Zabini D; Noe E; Krauszman A; Gutbier B; Yin J; Schaefer M; Arenz C; Hocke AC; Suttorp N; Proia RL; Witzenrath M; Kuebler WM
    Proc Natl Acad Sci U S A; 2015 Mar; 112(13):E1614-23. PubMed ID: 25829545
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of Transcription Factors in Pulmonary Artery Smooth Muscle Cells: An Important Link to Hypoxic Pulmonary Hypertension.
    Di Mise A; Wang YX; Zheng YM
    Adv Exp Med Biol; 2017; 967():13-32. PubMed ID: 29047078
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reoxygenation Reverses Hypoxic Pulmonary Arterial Remodeling by Inducing Smooth Muscle Cell Apoptosis via Reactive Oxygen Species-Mediated Mitochondrial Dysfunction.
    Chen J; Wang YX; Dong MQ; Zhang B; Luo Y; Niu W; Li ZC
    J Am Heart Assoc; 2017 Jun; 6(6):. PubMed ID: 28645933
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hypoxia-induced mitogenic factor/FIZZ1 induces intracellular calcium release through the PLC-IP(3) pathway.
    Fan C; Su Q; Li Y; Liang L; Angelini DJ; Guggino WB; Johns RA
    Am J Physiol Lung Cell Mol Physiol; 2009 Aug; 297(2):L263-70. PubMed ID: 19429774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrogen peroxide-induced Ca2+ mobilization in pulmonary arterial smooth muscle cells.
    Lin MJ; Yang XR; Cao YN; Sham JS
    Am J Physiol Lung Cell Mol Physiol; 2007 Jun; 292(6):L1598-608. PubMed ID: 17369291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Roles of different mitochondrial electron transport chain complexes in hypoxia-induced pulmonary vasoconstriction.
    Yang Z; Zhuan B; Yan Y; Jiang S; Wang T
    Cell Biol Int; 2016 Feb; 40(2):188-95. PubMed ID: 26454147
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hypoxia inducible factor 1 mediates hypoxia-induced TRPC expression and elevated intracellular Ca2+ in pulmonary arterial smooth muscle cells.
    Wang J; Weigand L; Lu W; Sylvester JT; Semenza GL; Shimoda LA
    Circ Res; 2006 Jun; 98(12):1528-37. PubMed ID: 16709899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.