These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 29388921)

  • 1. Charge-transfer channel in quantum dot-graphene hybrid materials.
    Cao S; Wang J; Ma F; Sun M
    Nanotechnology; 2018 Apr; 29(14):145202. PubMed ID: 29388921
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visualization of weak interactions between quantum dot and graphene in hybrid materials.
    Cao S; Wang J; Ding Y; Sun M; Ma F
    Sci Rep; 2017 Mar; 7(1):417. PubMed ID: 28341858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Directing Charge Transfer in Quantum Dot Assemblies.
    Bloom BP; Liu R; Zhang P; Ghosh S; Naaman R; Beratan DN; Waldeck DH
    Acc Chem Res; 2018 Oct; 51(10):2565-2573. PubMed ID: 30289241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum dots as an electron or hole acceptor: on some factors affecting charge transfer in dye-quantum dot composites.
    Jain K; Kishor S; Singh KS; Odelius M; Ramaniah LM
    Phys Chem Chem Phys; 2018 Oct; 20(42):27036-27048. PubMed ID: 30328853
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of Charge Separation and Frontier Orbital Structure in Graphitic Carbon Nitride and Graphene Quantum Dots.
    Ullah N; Chen S; Zhang R
    Chemphyschem; 2018 Oct; 19(19):2534-2539. PubMed ID: 30019383
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulating electronic coupling at the quantum dot/molecule interface by wavefunction engineering.
    Kaledin AL; Hill CL; Lian T; Musaev DG
    J Chem Phys; 2019 Mar; 150(12):124704. PubMed ID: 30927884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electronic structure and optical properties of dianionic and dicationic pi-dimers.
    Li Y; Li H; Zhao X; Chen M
    J Phys Chem A; 2010 Jul; 114(26):6972-7. PubMed ID: 20553013
    [TBL] [Abstract][Full Text] [Related]  

  • 8. π-Orbital mediated charge transfer channels in a monolayer Gr-NiPc heterointerface unveiled by soft X-ray electron spectroscopies and DFT calculations.
    Casotto A; Drera G; Perilli D; Freddi S; Pagliara S; Zanotti M; Schio L; Verdini A; Floreano L; Di Valentin C; Sangaletti L
    Nanoscale; 2022 Sep; 14(36):13166-13177. PubMed ID: 36039896
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of co-adsorption on interfacial charge transfer in a quantum dot@dye composite.
    Cui P; Xue Y
    Nanoscale Res Lett; 2021 Sep; 16(1):147. PubMed ID: 34542732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conditions for Directional Charge Transfer in CdSe Quantum Dots Functionalized by Ru(II) Polypyridine Complexes.
    Kilina S; Cui P; Fischer SA; Tretiak S
    J Phys Chem Lett; 2014 Oct; 5(20):3565-76. PubMed ID: 26278611
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrafast charge transfer at monolayer graphene surfaces with varied substrate coupling.
    Lizzit S; Larciprete R; Lacovig P; Kostov KL; Menzel D
    ACS Nano; 2013 May; 7(5):4359-66. PubMed ID: 23570394
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing Carrier Diffusion Length and Quantum Efficiency through Photoinduced Charge Transfer in Layered Graphene-Semiconducting Quantum Dot Devices.
    Dutta R; Pradhan A; Mondal P; Kakkar S; Sai TP; Ghosh A; Basu JK
    ACS Appl Mater Interfaces; 2021 May; 13(20):24295-24303. PubMed ID: 33998798
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum Confinement-Tunable Ultrafast Charge Transfer in a PbS Quantum Dots/WSe
    Zhang C; Lian L; Yang Z; Zhang J; Zhu H
    J Phys Chem Lett; 2019 Dec; 10(24):7665-7671. PubMed ID: 31769296
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cascading electron and hole transfer dynamics in a CdS/CdTe core-shell sensitized with bromo-pyrogallol red (Br-PGR): slow charge recombination in type II regime.
    Maity P; Debnath T; Chopra U; Ghosh HN
    Nanoscale; 2015 Feb; 7(6):2698-707. PubMed ID: 25583154
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Covalent Linking Greatly Enhances Photoinduced Electron Transfer in Fullerene-Quantum Dot Nanocomposites: Time-Domain Ab Initio Study.
    Chaban VV; Prezhdo VV; Prezhdo OV
    J Phys Chem Lett; 2013 Jan; 4(1):1-6. PubMed ID: 26291202
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature-Dependent Charge Carrier Transfer in Colloidal Quantum Dot/Graphene Infrared Photodetectors.
    Grotevent MJ; Hail CU; Yakunin S; Bachmann D; Kara G; Dirin DN; Calame M; Poulikakos D; Kovalenko MV; Shorubalko I
    ACS Appl Mater Interfaces; 2021 Jan; 13(1):848-856. PubMed ID: 33350310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Hybrid Quantum Mechanical Approach: Intimate Details of Electron Transfer between Type-I CdSe/ZnS Quantum Dots and an Anthraquinone Molecule.
    Kaledin AL; Lian T; Hill CL; Musaev DG
    J Phys Chem B; 2015 Jun; 119(24):7651-8. PubMed ID: 25604315
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optoelectronic response of hybrid PbS-QD/graphene photodetectors.
    Ahn S; Chung H; Chen W; Moreno-Gonzalez MA; Vazquez-Mena O
    J Chem Phys; 2019 Dec; 151(23):234705. PubMed ID: 31864279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Boosting the efficiency of quantum dot sensitized solar cells through modulation of interfacial charge transfer.
    Kamat PV
    Acc Chem Res; 2012 Nov; 45(11):1906-15. PubMed ID: 22493938
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coarse-grained time-dependent density functional simulation of charge transfer in complex systems: application to hole transfer in DNA.
    Kubar T; Elstner M
    J Phys Chem B; 2010 Sep; 114(34):11221-40. PubMed ID: 20687528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.