These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 29389035)

  • 1. The effect of recovery medium on the estimated heat-inactivation of spores of non-proteolytic Clostridium botulinum.
    Peck MW; Fairbairn DA; Lund BM
    Lett Appl Microbiol; 1992 Oct; 15(4):146-151. PubMed ID: 29389035
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Factors affecting growth from heat-treated spores of non-proteolytic Clostridium botulinum.
    Peck MW; Fairbairn DA; Lund BM
    Lett Appl Microbiol; 1992 Oct; 15(4):152-155. PubMed ID: 29389024
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combining heat treatment and subsequent incubation temperature to prevent growth from spores of non-proteolytic Clostridium botulinum.
    Stringer SC; Fairbairn DA; Peck MW
    J Appl Microbiol; 1997 Jan; 82(1):128-36. PubMed ID: 9113882
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A predictive model that describes the effect of prolonged heating at 70 to 90 degrees C and subsequent incubation at refrigeration temperatures on growth from spores and toxigenesis by nonproteolytic Clostridium botulinum in the presence of lysozyme.
    Fernández PS; Peck MW
    Appl Environ Microbiol; 1999 Aug; 65(8):3449-57. PubMed ID: 10427033
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of lysozyme concentration, heating at 90 degrees C, and then incubation at chilled temperatures on growth from spores of non-proteolytic Clostridium botulinum.
    Peck MW; Fernandez PS
    Lett Appl Microbiol; 1995 Jul; 21(1):50-4. PubMed ID: 7662337
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of media, additives, and incubation conditions on the recovery of high pressure and heat-injured Clostridium botulinum spores.
    Reddy NR; Tetzloff RC; Skinner GE
    Food Microbiol; 2010 Aug; 27(5):613-7. PubMed ID: 20510779
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of Sodium Chloride on Thermal Inactivation and Recovery of Nonproteolytic Clostridium botulinum Type B Strain KAP B5 Spores
    Juneja VK; Eblen BS
    J Food Prot; 1995 Jul; 58(7):813-816. PubMed ID: 31137323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal inactivation of nonproteolytic Clostridium botulinum type E spores in model fish media and in vacuum-packaged hot-smoked fish products.
    Lindström M; Nevas M; Hielm S; Lähteenmäki L; Peck MW; Korkeala H
    Appl Environ Microbiol; 2003 Jul; 69(7):4029-36. PubMed ID: 12839778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of sporulation medium and its divalent cation content on the heat and high pressure resistance of Clostridium botulinum type E spores.
    Lenz CA; Vogel RF
    Food Microbiol; 2014 Dec; 44():156-67. PubMed ID: 25084658
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prevalence of Clostridium species and behaviour of Clostridium botulinum in gnocchi, a REPFED of italian origin.
    Del Torre M; Stecchini ML; Braconnier A; Peck MW
    Int J Food Microbiol; 2004 Nov; 96(2):115-31. PubMed ID: 15364467
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal Resistance of Nonproteolytic Type B and Type E Clostridium botulinum Spores in Phosphate Buffer and Turkey Slurry
    Juneja VK; Eblen BS; Marmer BS; Williams AC; Palumbo SA; Miller AJ
    J Food Prot; 1995 Jul; 58(7):758-763. PubMed ID: 31137328
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Systematic Assessment of Nonproteolytic Clostridium botulinum Spores for Heat Resistance.
    Wachnicka E; Stringer SC; Barker GC; Peck MW
    Appl Environ Microbiol; 2016 Oct; 82(19):6019-29. PubMed ID: 27474721
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heat Resistance of Spores of Non-Proteolytic Type B Clostridium botulinum.
    Scott VN; Bernard DT
    J Food Prot; 1982 Aug; 45(10):909-912. PubMed ID: 30866256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inactivation of Clostridium perfringens type A spores at ultrahigh temperatures.
    Adams DM
    Appl Microbiol; 1973 Sep; 26(3):282-7. PubMed ID: 4356457
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High pressure thermal inactivation of Clostridium botulinum type E endospores - kinetic modeling and mechanistic insights.
    Lenz CA; Reineke K; Knorr D; Vogel RF
    Front Microbiol; 2015; 6():652. PubMed ID: 26191048
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heat Resistance of Clostridium botulinum Type G in Phosphate Buffer.
    Lynt RK; Solomon HM; Kautter DA
    J Food Prot; 1984 Jun; 47(6):463-466. PubMed ID: 30934481
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Risk assessment of proteolytic Clostridium botulinum in canned foie gras.
    Membré JM; Diao M; Thorin C; Cordier G; Zuber F; André S
    Int J Food Microbiol; 2015 Oct; 210():62-72. PubMed ID: 26093992
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hazard and control of group II (non-proteolytic) Clostridium botulinum in modern food processing.
    Lindström M; Kiviniemi K; Korkeala H
    Int J Food Microbiol; 2006 Apr; 108(1):92-104. PubMed ID: 16480785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Egg-yolk trypticase soy agar for the enumeration of heat-damaged spores of Clostridium sporogenes.
    Michels MJ; Kagei RF
    J Appl Bacteriol; 1983 Oct; 55(2):203-8. PubMed ID: 6228543
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recovery of spores of Clostridium difficile altered by heat or alkali.
    Kamiya S; Yamakawa K; Ogura H; Nakamura S
    J Med Microbiol; 1989 Mar; 28(3):217-21. PubMed ID: 2926793
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.