These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 29389035)

  • 21. Heat-Pasteurization Process for Inactivation of Nonproteolytic Types of Clostridium botulinum in Picked Dungeness Crabmeat.
    Peterson ME; Pelroy GA; Poysky FT; Paranjpye RN; Dong FM; Pigott GM; Eklund MW
    J Food Prot; 1997 Aug; 60(8):928-934. PubMed ID: 31207801
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The germinability of spores of a psychrotolerant, non-proteolytic strain of Clostridium botulinum is influenced by their formation and storage temperature.
    Evans RI; Russell NJ; Gould GW; McClure PJ
    J Appl Microbiol; 1997 Sep; 83(3):273-80. PubMed ID: 9351207
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Feasibility of a Heat-Pasteurization Process for the Inactivation of Nonproteolytic Clostridium botulinum types B and E in Vacuum-Packaged, Hot-Process (Smoked) Fish.
    Eklund MW; Peterson ME; Paranjpye R; Pelroy GA
    J Food Prot; 1988 Sep; 51(9):720-726. PubMed ID: 30991563
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Botulism Risk of Refrigerated, Processed Foods of Extended Durability.
    Notermans S; Dufrenne J; Lund BM
    J Food Prot; 1990 Dec; 53(12):1020-1024. PubMed ID: 31018272
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Predictive Model Describing the Effect of Prolonged Heating at 70 to 80°C and Incubation at Refrigeration Temperatures on Growth and Toxigenesis by Nonproteolylic Clostridium botulinum.
    Fernández PS; Peck MW
    J Food Prot; 1997 Sep; 60(9):1064-1071. PubMed ID: 31207839
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Combinations of Heat Treatment and Sodium Chloride That Prevent Growth from Spores of Nonproteolytic Clostridium botulinum.
    Stringer SC; Peck MW
    J Food Prot; 1997 Dec; 60(12):1553-1559. PubMed ID: 31207755
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Non-linear pressure/temperature-dependence of high pressure thermal inactivation of proteolytic Clostridium botulinum type B in foods.
    Maier MB; Lenz CA; Vogel RF
    PLoS One; 2017; 12(10):e0187023. PubMed ID: 29073204
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inability of Pediococcus pentosaceus to Inhibit Clostridium botulinum in
    Crandall AD; Winkowski K; Montville TJ
    J Food Prot; 1994 Feb; 57(2):104-107. PubMed ID: 31113140
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Clostridium botulinum in the post-genomic era.
    Peck MW; Stringer SC; Carter AT
    Food Microbiol; 2011 Apr; 28(2):183-91. PubMed ID: 21315972
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Does proximity to neighbours affect germination of spores of non-proteolytic Clostridium botulinum?
    Webb MD; Stringer SC; Le Marc Y; Baranyi J; Peck MW
    Food Microbiol; 2012 Oct; 32(1):104-9. PubMed ID: 22850380
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Differences and Similarities Among Proteolytic and Nonproteolytic Strains of Clostridium botulinum Types A, B, E and F: A Review.
    Lynt RK; Kautter DA; Solomon HM
    J Food Prot; 1982 Apr; 45(5):466-474. PubMed ID: 30866316
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantitative risk assessment for hazards that arise from non-proteolytic Clostridium botulinum in minimally processed chilled dairy-based foods.
    Malakar PK; Barker GC; Peck MW
    Food Microbiol; 2011 Apr; 28(2):321-30. PubMed ID: 21315990
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Challenge Studies with Clostridium botulinum in a Sous-Vide Spaghetti and Meat-Sauce Product.
    Simpson MV; Smith JP; Dodds K; Ramaswamy HS; Blanchfield B; Simpson BK
    J Food Prot; 1995 Mar; 58(3):229-234. PubMed ID: 31137299
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Heat-resistance of psychrotolerant Bacillus cereus vegetative cells.
    Guérin A; Dargaignaratz C; Clavel T; Broussolle V; Nguyen-The C
    Food Microbiol; 2017 Jun; 64():195-201. PubMed ID: 28213026
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Study of the combined effect of electro-activated solutions and heat treatment on the destruction of spores of Clostridium sporogenes and Geobacillus stearothermophilus in model solution and vegetable puree.
    Liato V; Labrie S; Viel C; Benali M; Aïder M
    Anaerobe; 2015 Oct; 35(Pt B):11-21. PubMed ID: 26103452
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Heat resistance of Clostridium sordellii spores.
    Kozma-Sipos Z; Szigeti J; Asványi B; Varga L
    Anaerobe; 2010 Jun; 16(3):226-8. PubMed ID: 20152919
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optimal spore germination in Clostridium botulinum ATCC 3502 requires the presence of functional copies of SleB and YpeB, but not CwlJ.
    Meaney CA; Cartman ST; McClure PJ; Minton NP
    Anaerobe; 2015 Aug; 34():86-93. PubMed ID: 25937262
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Heat Resistance of Clostridium botulinum Type B Spores Grown from Isolates from Commercially Canned Mushrooms
    Odlaug TE; Pflug IJ; Kautter DA
    J Food Prot; 1978 May; 41(5):351-353. PubMed ID: 30795142
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modeling the recovery of heat-treated Bacillus licheniformis Ad978 and Bacillus weihenstephanensis KBAB4 spores at suboptimal temperature and pH using growth limits.
    Trunet C; Mtimet N; Mathot AG; Postollec F; Leguerinel I; Sohier D; Couvert O; Carlin F; Coroller L
    Appl Environ Microbiol; 2015 Jan; 81(2):562-8. PubMed ID: 25381235
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Gas discharge plasmas are effective in inactivating Bacillus and Clostridium spores.
    Tseng S; Abramzon N; Jackson JO; Lin WJ
    Appl Microbiol Biotechnol; 2012 Mar; 93(6):2563-70. PubMed ID: 22075631
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.