These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 29389059)

  • 21. Performance matching between the surface structure of cucumber powdery mildew in different growth stages and the properties of surfactant solution.
    He L; Ding L; Waterhouse GIN; Li B; Liu F; Li P
    Pest Manag Sci; 2021 Jul; 77(7):3538-3546. PubMed ID: 33837661
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Method for Measuring the Surface Free Energy of Topical Semi-solid Dosage Forms.
    Hashizaki K; Hoshii Y; Ikeuchi K; Imai M; Taguchi H; Goto Y; Fujii M
    Chem Pharm Bull (Tokyo); 2021; 69(11):1083-1087. PubMed ID: 34719590
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Superhydrophobic Plant Leaves: The Variation in Surface Morphologies and Wettability during the Vegetation Period.
    Gou X; Guo Z
    Langmuir; 2019 Jan; 35(4):1047-1053. PubMed ID: 30621395
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Influence of rootstocks on growth, yield, fruit quality and leaf mineral element contents of pear cv. 'Santa Maria' in semi-arid conditions.
    Ikinci A; Bolat I; Ercisli S; Kodad O
    Biol Res; 2014 Dec; 47(1):71. PubMed ID: 25723734
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Impact of the equilibrium relationship between deposition and wettability behavior on the high-efficiency utilization of pesticides.
    He L; Ding L; Zhang P; Li B; Mu W; Liu F
    Pest Manag Sci; 2021 May; 77(5):2485-2493. PubMed ID: 33442936
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The wetting behavior of aqueous surfactant solutions on wheat (Triticum aestivum) leaf surfaces.
    Zhang C; Zhao X; Lei J; Ma Y; Du F
    Soft Matter; 2017 Jan; 13(2):503-513. PubMed ID: 27934995
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Regulating the Entire Journey of Pesticide Application on Surfaces of Hydrophobic Leaves Modified by Pathogens at Different Growth Stages.
    He L; Xi S; Ding L; Li B; Mu W; Li P; Liu F
    ACS Nano; 2022 Jan; 16(1):1318-1331. PubMed ID: 34939419
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Wetting Behavior and Maximum Retention of Aqueous Surfactant Solutions on Tea Leaves.
    Zhu F; Cao C; Cao L; Li F; Du F; Huang Q
    Molecules; 2019 Jun; 24(11):. PubMed ID: 31159412
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multiscale Janus Surface Structure of
    Mohd G; Majid K; Lone S
    ACS Appl Mater Interfaces; 2022 Jan; 14(3):4690-4698. PubMed ID: 34985254
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genetic differentiation in cauline-leaf-specific wettability of a rosette-forming perennial Arabidopsis from two contrasting montane habitats.
    Aryal B; Shinohara W; Honjo MN; Kudoh H
    Ann Bot; 2018 Jun; 121(7):1351-1360. PubMed ID: 29579149
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The wetting properties of Langmuir-Blodgett and Langmuir-Schaefer films formed by DPPC and POSS compounds.
    Rojewska M; Skrzypiec M; Prochaska K
    Chem Phys Lipids; 2019 Jul; 221():158-166. PubMed ID: 30954535
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Leaf wettability and leaf angle affect air-moisture deposition in wheat for self-irrigation.
    Hakeem S; Ali Z; Saddique MAB; Merrium S; Arslan M; Habib-Ur-Rahman M
    BMC Plant Biol; 2023 Feb; 23(1):115. PubMed ID: 36849909
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Wet granulation end point prediction using dimensionless numbers in a mixer torque rheometer: Relationship between capillary and Weber numbers and the optimal wet mass consistency.
    Ly A; Esma Achouri I; Gosselin R; Abatzoglou N
    Int J Pharm; 2021 Aug; 605():120823. PubMed ID: 34171431
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Importance of adjuvant formulation properties in predicting wetting on leaf surfaces.
    Nairn JJ; Forster WA
    Pest Manag Sci; 2024 Feb; 80(2):212-219. PubMed ID: 36495479
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Strelitzia reginae leaf as a natural template for anisotropic wetting and superhydrophobicity.
    Mele E; Girardo S; Pisignano D
    Langmuir; 2012 Mar; 28(11):5312-7. PubMed ID: 22401575
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Repellency of the lotus leaf: contact angles, drop retention, and sliding angles.
    Extrand CW; Moon SI
    Langmuir; 2014 Jul; 30(29):8791-7. PubMed ID: 25029189
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Efficient pesticide formulation and regulation mechanism for improving the deposition of droplets on the leaves of rice (Oryza sativa L.).
    Zheng L; Cao C; Chen Z; Cao L; Huang Q; Song B
    Pest Manag Sci; 2021 Jul; 77(7):3198-3207. PubMed ID: 33682990
    [TBL] [Abstract][Full Text] [Related]  

  • 38. From natural to biomimetic: The superhydrophobicity and the contact time.
    Liang YH; Peng J; Li XJ; Xu JK; Zhang ZH; Ren LQ
    Microsc Res Tech; 2016 Aug; 79(8):712-20. PubMed ID: 27252147
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Surface free energy characterization of vernix caseosa. Potential role in waterproofing the newborn infant.
    Youssef W; Wickett RR; Hoath SB
    Skin Res Technol; 2001 Feb; 7(1):10-7. PubMed ID: 11301635
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.