BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 29389073)

  • 1. A fungal mock community control for amplicon sequencing experiments.
    Bakker MG
    Mol Ecol Resour; 2018 May; 18(3):541-556. PubMed ID: 29389073
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metataxonomic comparison between internal transcribed spacer and 26S ribosomal large subunit (LSU) rDNA gene.
    Mota-Gutierrez J; Ferrocino I; Rantsiou K; Cocolin L
    Int J Food Microbiol; 2019 Feb; 290():132-140. PubMed ID: 30340111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accurate Estimation of Fungal Diversity and Abundance through Improved Lineage-Specific Primers Optimized for Illumina Amplicon Sequencing.
    Taylor DL; Walters WA; Lennon NJ; Bochicchio J; Krohn A; Caporaso JG; Pennanen T
    Appl Environ Microbiol; 2016 Dec; 82(24):7217-7226. PubMed ID: 27736792
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Different Amplicon Targets for Sequencing-Based Studies of Fungal Diversity.
    De Filippis F; Laiola M; Blaiotta G; Ercolini D
    Appl Environ Microbiol; 2017 Sep; 83(17):. PubMed ID: 28625991
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ITS all right mama: investigating the formation of chimeric sequences in the ITS2 region by DNA metabarcoding analyses of fungal mock communities of different complexities.
    Bjørnsgaard Aas A; Davey ML; Kauserud H
    Mol Ecol Resour; 2017 Jul; 17(4):730-741. PubMed ID: 27775220
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel ultra high-throughput 16S rRNA gene amplicon sequencing library preparation method for the Illumina HiSeq platform.
    de Muinck EJ; Trosvik P; Gilfillan GD; Hov JR; Sundaram AYM
    Microbiome; 2017 Jul; 5(1):68. PubMed ID: 28683838
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long-read DNA metabarcoding of ribosomal RNA in the analysis of fungi from aquatic environments.
    Heeger F; Bourne EC; Baschien C; Yurkov A; Bunk B; Spröer C; Overmann J; Mazzoni CJ; Monaghan MT
    Mol Ecol Resour; 2018 Nov; 18(6):1500-1514. PubMed ID: 30106226
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring the accuracy of amplicon-based internal transcribed spacer markers for a fungal community.
    Li S; Deng Y; Wang Z; Zhang Z; Kong X; Zhou W; Yi Y; Qu Y
    Mol Ecol Resour; 2020 Jan; 20(1):170-184. PubMed ID: 31599091
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sample Preparation for Fungal Community Analysis by High-Throughput Sequencing of Barcode Amplicons.
    Clemmensen KE; Ihrmark K; Durling MB; Lindahl BD
    Methods Mol Biol; 2016; 1399():61-88. PubMed ID: 26791497
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison and validation of some ITS primer pairs useful for fungal metabarcoding studies.
    Op De Beeck M; Lievens B; Busschaert P; Declerck S; Vangronsveld J; Colpaert JV
    PLoS One; 2014; 9(6):e97629. PubMed ID: 24933453
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Utilizing ITS1 and ITS2 to study environmental fungal diversity using pyrosequencing.
    Monard C; Gantner S; Stenlid J
    FEMS Microbiol Ecol; 2013 Apr; 84(1):165-75. PubMed ID: 23176677
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new fungal large subunit ribosomal RNA primer for high-throughput sequencing surveys.
    Mueller RC; Gallegos-Graves LV; Kuske CR
    FEMS Microbiol Ecol; 2016 Feb; 92(2):. PubMed ID: 26656064
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ITS1 versus ITS2 as DNA metabarcodes for fungi.
    Blaalid R; Kumar S; Nilsson RH; Abarenkov K; Kirk PM; Kauserud H
    Mol Ecol Resour; 2013 Mar; 13(2):218-24. PubMed ID: 23350562
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of DNA extraction and PCR amplification on studies of soil fungal communities based on amplicon sequencing.
    Xu L; Ravnskov S; Larsen J; Nicolaisen M
    Can J Microbiol; 2011 Dec; 57(12):1062-6. PubMed ID: 22133149
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New Primers for Discovering Fungal Diversity Using Nuclear Large Ribosomal DNA.
    Asemaninejad A; Weerasuriya N; Gloor GB; Lindo Z; Thorn RG
    PLoS One; 2016; 11(7):e0159043. PubMed ID: 27391306
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA metabarcoding to assess indoor fungal communities: Electrostatic dust collectors and Illumina sequencing.
    Rocchi S; Valot B; Reboux G; Millon L
    J Microbiol Methods; 2017 Aug; 139():107-112. PubMed ID: 28559161
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of Passive Traps Combined with High-Throughput Sequencing To Study Airborne Fungal Communities.
    Aguayo J; Fourrier-Jeandel C; Husson C; Ioos R
    Appl Environ Microbiol; 2018 Jun; 84(11):. PubMed ID: 29572213
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved selection of internal transcribed spacer-specific primers enables quantitative, ultra-high-throughput profiling of fungal communities.
    Bokulich NA; Mills DA
    Appl Environ Microbiol; 2013 Apr; 79(8):2519-26. PubMed ID: 23377949
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Porcine fungal mock community analyses: Implications for mycobiome investigations.
    Arfken AM; Frey JF; Carrillo NI; Dike NI; Onyeachonamm O; Rivera DN; Davies CP; Summers KL
    Front Cell Infect Microbiol; 2023; 13():928353. PubMed ID: 36844394
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protocols for Investigating the Leaf Mycobiome Using High-Throughput DNA Sequencing.
    Brown SP; Leopold DR; Busby PE
    Methods Mol Biol; 2018; 1848():39-51. PubMed ID: 30182227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.