BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

428 related articles for article (PubMed ID: 29389522)

  • 21. What can we learn from leukemia as for the process of lineage commitment in hematopoiesis?
    Schmidt CA; Przybylski GK
    Int Rev Immunol; 2001 Feb; 20(1):107-15. PubMed ID: 11342300
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Activation of the canonical Wnt pathway leads to loss of hematopoietic stem cell repopulation and multilineage differentiation block.
    Kirstetter P; Anderson K; Porse BT; Jacobsen SE; Nerlov C
    Nat Immunol; 2006 Oct; 7(10):1048-56. PubMed ID: 16951689
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Deregulated Notch and Wnt signaling activates early-stage myeloid regeneration pathways in leukemia.
    Kang YA; Pietras EM; Passegué E
    J Exp Med; 2020 Mar; 217(3):. PubMed ID: 31886826
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of the Wnt/beta-catenin network in regulating hematopoiesis.
    Wilusz M; Majka M
    Arch Immunol Ther Exp (Warsz); 2008; 56(4):257-66. PubMed ID: 18726147
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phosphatase of regenerating liver in hematopoietic stem cells and hematological malignancies.
    Kobayashi M; Chen S; Gao R; Bai Y; Zhang ZY; Liu Y
    Cell Cycle; 2014; 13(18):2827-35. PubMed ID: 25486470
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Wnt signaling in leukemias and myeloma: T-cell factors are in control.
    Tiemessen MM; Staal FJ
    Future Oncol; 2013 Nov; 9(11):1757-72. PubMed ID: 24156335
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Non-canonical Wnt signaling pathways in hematopoiesis.
    Kokolus K; Nemeth MJ
    Immunol Res; 2010 Mar; 46(1-3):155-64. PubMed ID: 19763894
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Notch signaling: its roles and therapeutic potential in hematological malignancies.
    Gu Y; Masiero M; Banham AH
    Oncotarget; 2016 May; 7(20):29804-23. PubMed ID: 26934331
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Non-lymphoma hematological malignancies in systemic lupus erythematosus.
    Lu M; Bernatsky S; Ramsey-Goldman R; Petri M; Manzi S; Urowitz MB; Gladman D; Fortin PR; Ginzler EM; Yelin E; Bae SC; Wallace DJ; Jacobsen S; Dooley MA; Peschken CA; Alarcón GS; Nived O; Gottesman L; Criswell LA; Sturfelt G; Dreyer L; Lee JL; Clarke AE
    Oncology; 2013; 85(4):235-40. PubMed ID: 24107608
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Telomerase activity and telomere length in acute and chronic leukemia, pre- and post-ex vivo culture.
    Engelhardt M; Mackenzie K; Drullinsky P; Silver RT; Moore MA
    Cancer Res; 2000 Feb; 60(3):610-7. PubMed ID: 10676644
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lack of autophagy in the hematopoietic system leads to loss of hematopoietic stem cell function and dysregulated myeloid proliferation.
    Mortensen M; Watson AS; Simon AK
    Autophagy; 2011 Sep; 7(9):1069-70. PubMed ID: 21552009
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Targeting Casein Kinase 1 (CK1) in Hematological Cancers.
    Janovská P; Normant E; Miskin H; Bryja V
    Int J Mol Sci; 2020 Nov; 21(23):. PubMed ID: 33261128
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Netting Novel Regulators of Hematopoiesis and Hematologic Malignancies in Zebrafish.
    Kwan W; North TE
    Curr Top Dev Biol; 2017; 124():125-160. PubMed ID: 28335858
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanisms controlling hematopoietic stem cell functions during normal hematopoiesis and hematological malignancies.
    Warr MR; Pietras EM; Passegué E
    Wiley Interdiscip Rev Syst Biol Med; 2011; 3(6):681-701. PubMed ID: 21412991
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A germline point mutation in the MYC-FBW7 phosphodegron initiates hematopoietic malignancies.
    Freie B; Carroll PA; Varnum-Finney BJ; Ramsey EL; Ramani V; Bernstein I; Eisenman RN
    Genes Dev; 2024 Apr; 38(5-6):253-272. PubMed ID: 38565249
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nucleophosmin leukemogenic mutant activates Wnt signaling during zebrafish development.
    Barbieri E; Deflorian G; Pezzimenti F; Valli D; Saia M; Meani N; Gruszka AM; Alcalay M
    Oncotarget; 2016 Aug; 7(34):55302-55312. PubMed ID: 27486814
    [TBL] [Abstract][Full Text] [Related]  

  • 37. CDCP1 identifies a broad spectrum of normal and malignant stem/progenitor cell subsets of hematopoietic and nonhematopoietic origin.
    Bühring HJ; Kuçi S; Conze T; Rathke G; Bartolović K; Grünebach F; Scherl-Mostageer M; Brümmendorf TH; Schweifer N; Lammers R
    Stem Cells; 2004; 22(3):334-43. PubMed ID: 15153610
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tracking hematopoietic stem cells and their progeny using whole-genome sequencing.
    Lee-Six H; Kent DG
    Exp Hematol; 2020 Mar; 83():12-24. PubMed ID: 32007478
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Patterns of hematological and non-hematological malignancies in bone marrow in a tertiary care hospital in Nepal--11 years study.
    Ghartimagar D; Ghosh A; Narasimhan R; Talwar OP
    Nepal Med Coll J; 2012 Sep; 14(3):187-92. PubMed ID: 24047012
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Circular RNAs in Blood Malignancies.
    Perez de Acha O; Rossi M; Gorospe M
    Front Mol Biosci; 2020; 7():109. PubMed ID: 32676504
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.