BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 29389563)

  • 1. Non-destructive profiling of volatile organic compounds using HS-SPME/GC-MS and its application for the geographical discrimination of white rice.
    Lim DK; Mo C; Lee DK; Long NP; Lim J; Kwon SW
    J Food Drug Anal; 2018 Jan; 26(1):260-267. PubMed ID: 29389563
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparative HS-SPME/GC-MS-based metabolomics approach for discriminating selected japonica rice varieties from different regions of China in raw and cooked form.
    Zhao Q; Xi J; Xu D; Jin Y; Wu F; Tong Q; Yin Y; Xu X
    Food Chem; 2022 Aug; 385():132701. PubMed ID: 35320761
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolomic fingerprinting of volatile organic compounds for the geographical discrimination of rice samples from China, Vietnam and India.
    Ch R; Chevallier O; McCarron P; McGrath TF; Wu D; Nguyen Doan Duy L; Kapil AP; McBride M; Elliott CT
    Food Chem; 2021 Jan; 334():127553. PubMed ID: 32688177
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fingerprinting of Volatile Organic Compounds for the Geographical Discrimination of Rice Samples from Northeast China.
    Asimi S; Ren X; Zhang M; Li S; Guan L; Wang Z; Liang S; Wang Z
    Foods; 2022 Jun; 11(12):. PubMed ID: 35741894
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of volatile compounds by GCMS reveals their rice cultivars.
    Hu S; Ren H; Song Y; Liu F; Qian L; Zuo F; Meng L
    Sci Rep; 2023 May; 13(1):7973. PubMed ID: 37198224
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Untargeted and Targeted Discrimination of Honey Collected by
    Wang X; Rogers KM; Li Y; Yang S; Chen L; Zhou J
    J Agric Food Chem; 2019 Oct; 67(43):12144-12152. PubMed ID: 31587558
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The integration of multi-platform MS-based metabolomics and multivariate analysis for the geographical origin discrimination of Oryza sativa L.
    Lim DK; Mo C; Lee JH; Long NP; Dong Z; Li J; Lim J; Kwon SW
    J Food Drug Anal; 2018 Apr; 26(2):769-777. PubMed ID: 29567248
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discrimination and Characterization of the Volatile Organic Compounds in
    Li C; Wan H; Wu X; Yin J; Zhu L; Chen H; Song X; Han L; Yang W; Yu H; Li Z
    Molecules; 2022 Jul; 27(14):. PubMed ID: 35889268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discrimination of Cultivated Regions of Soybeans (
    Kim SY; Kim SY; Lee SM; Lee DY; Shin BK; Kang DJ; Choi HK; Kim YS
    Molecules; 2020 Feb; 25(3):. PubMed ID: 32050669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Key-Marker Volatile Compounds in Aromatic Rice (
    Setyaningsih W; Majchrzak T; Dymerski T; Namieśnik J; Palma M
    Molecules; 2019 Nov; 24(22):. PubMed ID: 31752176
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Qualitative and quantitative prediction of volatile compounds from initial amino acid profiles in Korean rice wine (makgeolli) model.
    Kang BS; Lee JE; Park HJ
    J Food Sci; 2014 Jun; 79(6):C1106-16. PubMed ID: 24888253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimized Mass Spectrometry-Based Metabolite Extraction and Analysis for the Geographical Discrimination of White Rice (
    Lim DK; Long NP; Mo C; Dong Z; Lim J; Kwon SW
    J AOAC Int; 2018 Mar; 101(2):498-506. PubMed ID: 28762322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Screening of volatile decay markers of minced pork by headspace-solid phase microextraction-gas chromatography-mass spectrometry and chemometrics.
    Song X; Canellas E; Nerin C
    Food Chem; 2021 Apr; 342():128341. PubMed ID: 33077278
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of milling and long-term storage on volatiles of black rice (Oryza sativa L.) determined by headspace solid-phase microextraction with gas chromatography-mass spectrometry.
    Choi S; Seo HS; Lee KR; Lee S; Lee J; Lee J
    Food Chem; 2019 Mar; 276():572-582. PubMed ID: 30409635
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Geographical discrimination of Chinese winter wheat using volatile compound analysis by HS-SPME/GC-MS coupled with multivariate statistical analysis.
    Wadood SA; Boli G; Xiaowen Z; Raza A; Yimin W
    J Mass Spectrom; 2020 Jan; 55(1):e4453. PubMed ID: 31652388
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High hydrostatic pressure treatments enhance volatile components of pre-germinated brown rice revealed by aromatic fingerprinting based on HS-SPME/GC-MS and chemometric methods.
    Xia Q; Mei J; Yu W; Li Y
    Food Res Int; 2017 Jan; 91():103-114. PubMed ID: 28290313
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Optimized SPME-GC-MS Method for Volatile Metabolite Profiling of Different Alfalfa (
    Yang DS; Lei Z; Bedair M; Sumner LW
    Molecules; 2021 Oct; 26(21):. PubMed ID: 34770882
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the volatile components in green tea by IRAE-HS-SPME/GC-MS combined with multivariate analysis.
    Yang YQ; Yin HX; Yuan HB; Jiang YW; Dong CW; Deng YL
    PLoS One; 2018; 13(3):e0193393. PubMed ID: 29494626
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Geographical Discrimination of Bell Pepper (
    Reale S; Biancolillo A; Gasparrini C; Di Martino L; Di Cecco V; Manzi A; Di Santo M; D'Archivio AA
    Molecules; 2021 Oct; 26(20):. PubMed ID: 34684758
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of Volatile Profiles of Six Popular Edible Mushrooms Using Headspace-Solid-Phase Microextraction Coupled with Gas Chromatography Combined with Chemometric Analysis.
    Jung MY; Lee DE; Cheng HY; Chung IM; Kim SH; Han JG; Kong WS
    J Food Sci; 2019 Mar; 84(3):421-429. PubMed ID: 30775790
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.