These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 29389683)

  • 1. Progression of chronic kidney disease in children - role of glomerular hemodynamics and interstitial fibrosis.
    Oliveira EA; Mak RH
    Curr Opin Pediatr; 2018 Apr; 30(2):220-227. PubMed ID: 29389683
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Progression of glomerular and tubular disease in pediatrics.
    Woroniecki RP; Schnaper HW
    Semin Nephrol; 2009 Jul; 29(4):412-24. PubMed ID: 19615562
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteinuria: detection and role in native renal disease progression.
    Gorriz JL; Martinez-Castelao A
    Transplant Rev (Orlando); 2012 Jan; 26(1):3-13. PubMed ID: 22137726
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tubular atrophy in the pathogenesis of chronic kidney disease progression.
    Schelling JR
    Pediatr Nephrol; 2016 May; 31(5):693-706. PubMed ID: 26208584
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Identification of Biomarkers for Tubular Injury and Interstitial Fibrosis in Chronic Kidney Disease].
    Nakagawa S
    Yakugaku Zasshi; 2017; 137(11):1355-1360. PubMed ID: 29093371
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular Markers of Tubulointerstitial Fibrosis and Tubular Cell Damage in Patients with Chronic Kidney Disease.
    Nakagawa S; Nishihara K; Miyata H; Shinke H; Tomita E; Kajiwara M; Matsubara T; Iehara N; Igarashi Y; Yamada H; Fukatsu A; Yanagita M; Matsubara K; Masuda S
    PLoS One; 2015; 10(8):e0136994. PubMed ID: 26317775
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lysyl oxidase‑like 2 is expressed in kidney tissue and is associated with the progression of tubulointerstitial fibrosis.
    Choi SE; Jeon N; Choi HY; Shin JI; Jeong HJ; Lim BJ
    Mol Med Rep; 2017 Sep; 16(3):2477-2482. PubMed ID: 28677767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TDAG51 induces renal interstitial fibrosis through modulation of TGF-β receptor 1 in chronic kidney disease.
    Carlisle RE; Mohammed-Ali Z; Lu C; Yousof T; Tat V; Nademi S; MacDonald ME; Austin RC; Dickhout JG
    Cell Death Dis; 2021 Oct; 12(10):921. PubMed ID: 34625532
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of TGF-β in chronic kidney disease: an integration of tubular, glomerular and vascular effects.
    López-Hernández FJ; López-Novoa JM
    Cell Tissue Res; 2012 Jan; 347(1):141-54. PubMed ID: 22105921
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison of biochemical and histopathologic staging in cats with chronic kidney disease.
    McLeland SM; Cianciolo RE; Duncan CG; Quimby JM
    Vet Pathol; 2015 May; 52(3):524-34. PubMed ID: 25516066
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomarkers of Chronic Renal Tubulointerstitial Injury.
    Bagnasco SM; Rosenberg AZ
    J Histochem Cytochem; 2019 Sep; 67(9):633-641. PubMed ID: 31242044
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hypoxia and Renal Tubulointerstitial Fibrosis.
    Li ZL; Liu BC
    Adv Exp Med Biol; 2019; 1165():467-485. PubMed ID: 31399980
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of cell plasticity in progression and reversal of renal fibrosis.
    Dussaule JC; Guerrot D; Huby AC; Chadjichristos C; Shweke N; Boffa JJ; Chatziantoniou C
    Int J Exp Pathol; 2011 Jun; 92(3):151-7. PubMed ID: 21314743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tubulointerstitial changes as a major determinant in the progression of renal damage.
    Nath KA
    Am J Kidney Dis; 1992 Jul; 20(1):1-17. PubMed ID: 1621674
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Healthy bone marrow cells reduce progression of kidney failure better than CKD bone marrow cells in rats with established chronic kidney disease.
    van Koppen A; Joles JA; Bongartz LG; van den Brandt J; Reichardt HM; Goldschmeding R; Nguyen TQ; Verhaar MC
    Cell Transplant; 2012; 21(10):2299-312. PubMed ID: 23231961
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapamycin inhibits PAI-1 expression and reduces interstitial fibrosis and glomerulosclerosis in chronic allograft nephropathy.
    Pontrelli P; Rossini M; Infante B; Stallone G; Schena A; Loverre A; Ursi M; Verrienti R; Maiorano A; Zaza G; Ranieri E; Gesualdo L; Ditonno P; Bettocchi C; Schena FP; Grandaliano G
    Transplantation; 2008 Jan; 85(1):125-34. PubMed ID: 18192922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Urinary mitochondrial DNA level as a biomarker of tissue injury in non-diabetic chronic kidney diseases.
    Wei Z; Kwan BC; Chow KM; Cheng PM; Luk CC; Lai KB; Li PK; Szeto CC
    BMC Nephrol; 2018 Dec; 19(1):367. PubMed ID: 30567508
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RIPK3-Mediated Necroptosis and Apoptosis Contributes to Renal Tubular Cell Progressive Loss and Chronic Kidney Disease Progression in Rats.
    Zhu Y; Cui H; Xia Y; Gan H
    PLoS One; 2016; 11(6):e0156729. PubMed ID: 27281190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The cellular and signalling alterations conducted by TGF-β contributing to renal fibrosis.
    Vega G; Alarcón S; San Martín R
    Cytokine; 2016 Dec; 88():115-125. PubMed ID: 27599257
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acute kidney injury to chronic kidney disease transition: insufficient cellular stress response.
    Strausser SA; Nakano D; Souma T
    Curr Opin Nephrol Hypertens; 2018 Jul; 27(4):314-322. PubMed ID: 29702491
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.